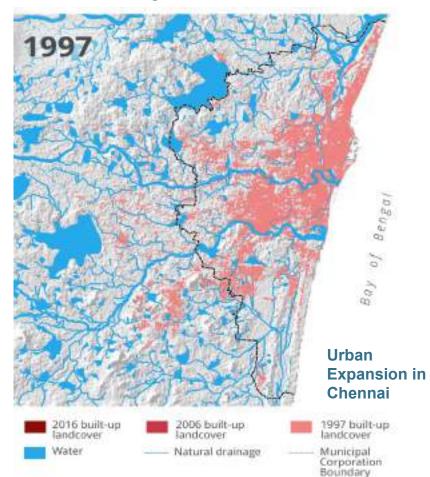
Lessons from planning and designing Nature-based Solutions in urban India: From Basins to Sponge Parks

Collaborative Chennai | Bengaluru Kolkata | Lyon

Climate change will be increasing the intensity and recurrence of hazards Indians are already facing



Chennai Water Crisis 2019

Delhi Heat Wave 2022

Land-use change and the nature of urbanization in India also create greater risk for people and assets

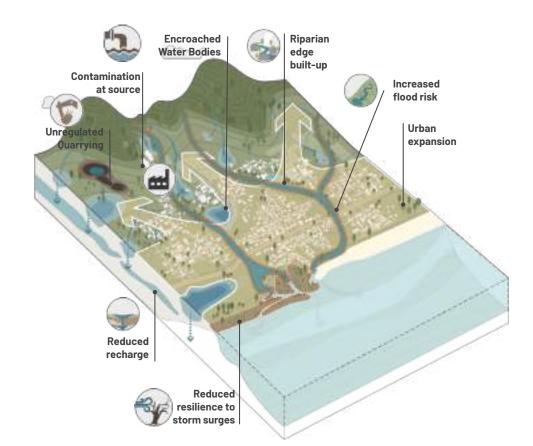
Nature-based Solutions (NbS) leverage functioning ecosystems or restore landscapes to reduce risks from flooding to heat and provide multiple benefits

Image Credit : Sponge Collaborative

Project Credit : LANDPROCESS

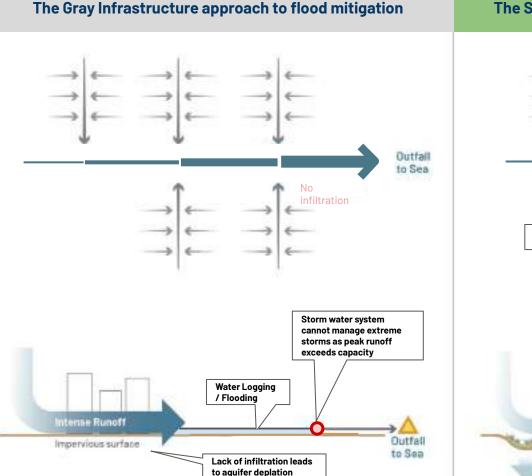
Sanya Dong'an Wetland Park, Hainan, China

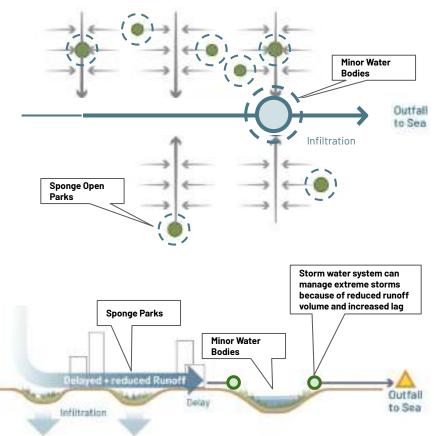
Project Credit : Turenscape


12 acre Chulalongkorn University Centenary Park in Bangkok, Thailand

Urban pollution and unplanned development reduce or remove the potential of ecosystems to reduce risk

Pre-colonial Water Management by the Cholas


Modified Hydrological Cycles due to contemporary urbanization


We promote NbS through the Sponge City approach by improving public spaces and ecosystems to reduce flood, drought, and extreme heat risks while providing social amenities to residents and a habitat for urban wildlife

The Sponge City approach manages rainwater as an urban resource and equip cities to face climate change

The Sponge City approach to flood and drought mitigation

PRINCIPLES OF NATURE-BASED SOLUTIONS (Based on UNEP and IUCN definitions)

1. Protect

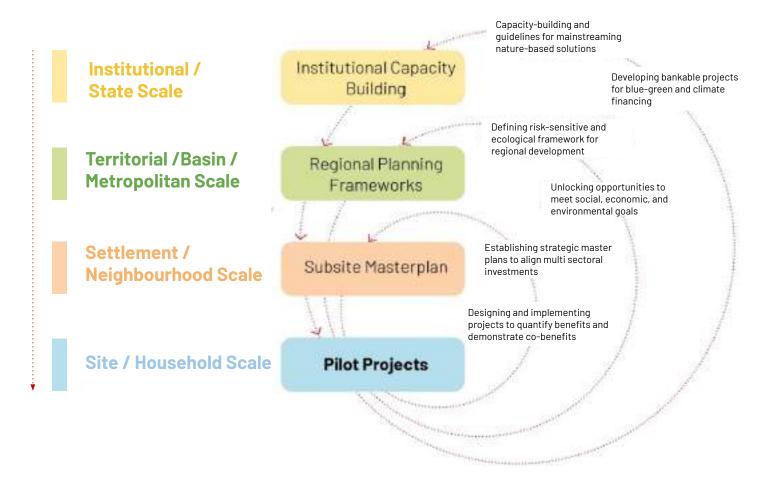
Green Ecosystems and Water Bodies from Encroachment or Pollution

2. Restore

Ecological Functions of Degraded or Polluted Landscapes

3.Enhance

Coastal, Riparian, Wetland Ecosystems with Hybrid Infrastructure

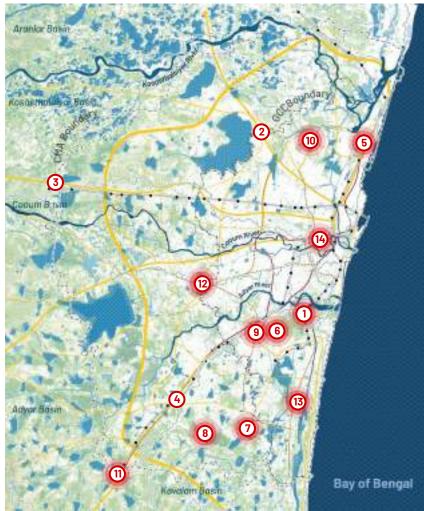


4. Construct

Blue-Green Infrastructure in open spaces, streets, and buildings

Nature-based Solutions require a multi-scalar approach where projects are strategically aligned because of a regional vision or neighbourhood framework and scalable because of capacity building or detailed guidelines

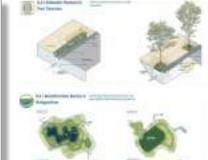
Learning from our experiences in transforming the Chennai Metropolitan Area into a Sponge City


Sponge Handbook: Chennai (Cities Fit for Climate Change)
 Sponge Park Framework for Resilient Open Spaces in GCC

CMA Vision for Environment and Climate Resilience
 Adyar River Vision for Ecological River-sensitive Development

(5) Detailed Feasibility Study for Blue-green Infrastructure in Kosasthalaiyar Basin (Thiruvottiyur and Mathur Colony)
(6) Masterplan and DPR for Velachery Lakefront Rejuvenation
(7) Masterplan and DPR for Perumbakkam Lake Restoration
(8) Vision and Concept Plan for Madambakkam Lake
(9) Vision and Concept Plan for Adambakkam Lake

(1) Integrated Sponge Park in Mathur Colony Detailed Project Report


- Kilambakkam Archaeological Center, Biodiversity and Climate Park (Under Construction)
- Porur Wetland Park (Under Construction)
- 🔞 Kannagi Nagar Integrated Community Center and Market
- 19 FUSO Sponge Building Retrofit

Mainstreaming nature-based solutions among urban local bodies and government institutions to address flooding, water scarcity, and heat through publications, training, and lessons from pilot projects

2018 | SPONGE HANDBOOK, CHENNAI (Author. GIZ India, 2018)

Greater Chennal Corporation plans to set up 'sponge park'

Thirt (million Sec.3 202) 10'0 (CT

00 52 11

OW SUCH A PARK WORKS					
A sponge park is an urban space instructed to collect, filter and	Several layers of pond zones created around it to store water				
ore the run-off during heavy Infall	Around these pond structure a rain garden using rative spe of trees and a top layer of sam and compost is set up to allow faster water infittration and percolation				
A tank with several layers of tors using growt, sand, and efilters is set up at the centre of e park. It is an artificial wetland					
nucture without any concrete coring but water infiltration ocks	> During dry months, the space can be used as a park or recreation area				

Chennai Corporation to develop sponge parks at 10 locations

The initiation of our of the sponger packs is True crucic the most will start this securit and is supected to be recognized in size remains, about all the court of the scenderor monotone, say ellipticit.

Corporation to convert Chennai into 'sponge city'

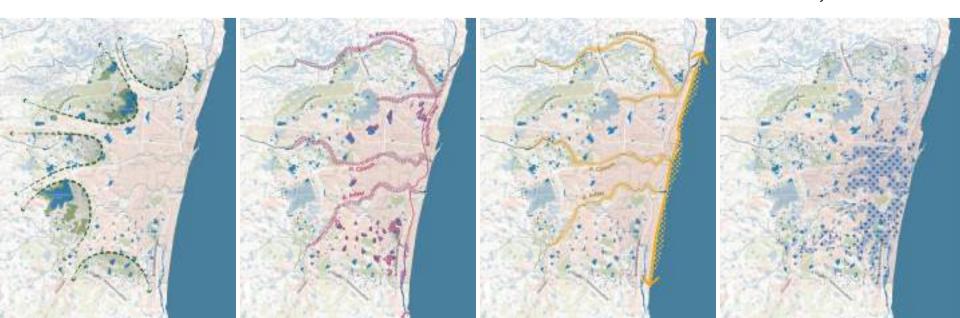
In the Fast argo, Net circlaship, would an over thost personable parenters to are used in our the trendy construction parks and the ground level senably of the samed to reduce that install Caro abstraction altabia, the official addition

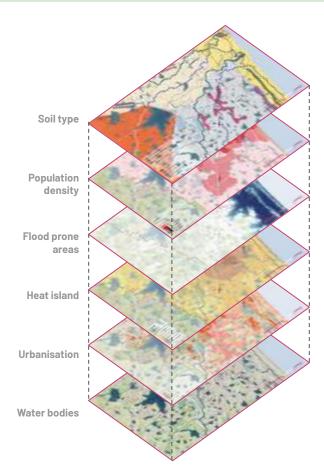
Short-Term Projects

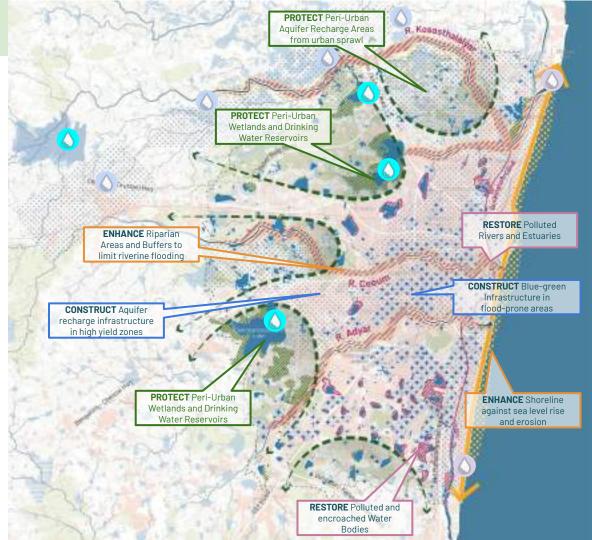
ECR: City managers bet big on sustainable stormwater drains

N

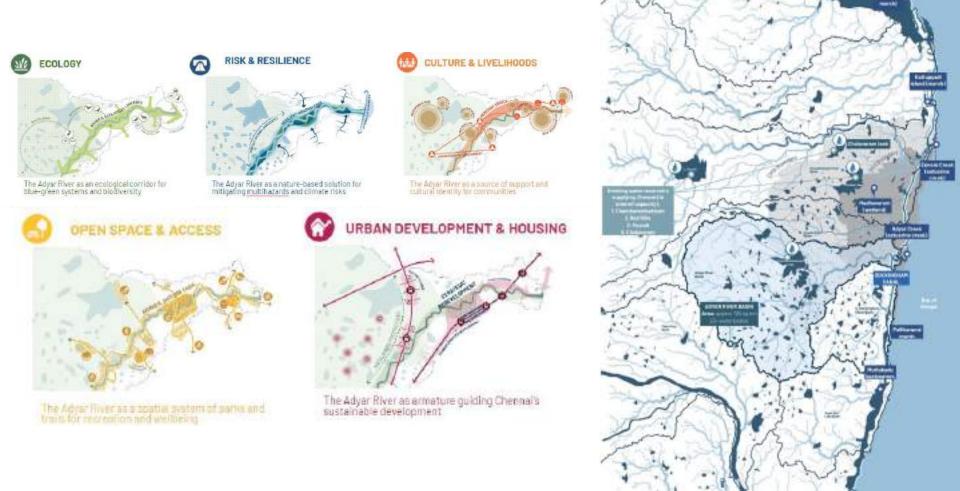
 A second and the distribution of the second s


¹ A. Saraha, "A second se


Metropolitan Development Plans and Strategic Basin Planning


Spatial framework to prioritize where blue-green systems need to be protected from land-use conversion, restored from negative urban impacts, enhanced to face climate risks, and constructed to mitigate hazards

PROTECT Ecosystems and water bodies from encroachment or pollution (P) **RESTORE** Ecological functions of degraded or polluted landscape **(R)** **ENHANCE** Coastal, riparian, and wetland areas to withstand climate change **(E)** **CONSTRUCT** Blue-green infrastructure in urban open spaces, streets, and buildings to replicate natural systems **(C)**


Developing a spatial framework for ecological development in CMA using data

Identifying opportunities within a basin for water-sensitive and multi-sectoral urban development strategies

And in case

Vision for Ecological

- Adyar basin is the southernmost of the three major river systems within Chennai city extents
- The riverine transect encompasses urban, peri-urban and rural contexts of the Chennai Metropolitan Area
- Basin approach considers the interconnectedness of the river to the aquifer and upstream areas that impact the quantity and quality of water entering Chennai's rivers

Thematic Mapping: Risk and Critical Infrastructure a cose soom in the test of tes

Ξ

IIIIII

mun

÷

TO KONAMBEDU BUS TERMINUS TO CENTRAL RAIL WAY STATION unui?

Automotion and a second second second

Encrosofimpents at on offwart edge Prophilad TNHE Protect

DOM:

264

100

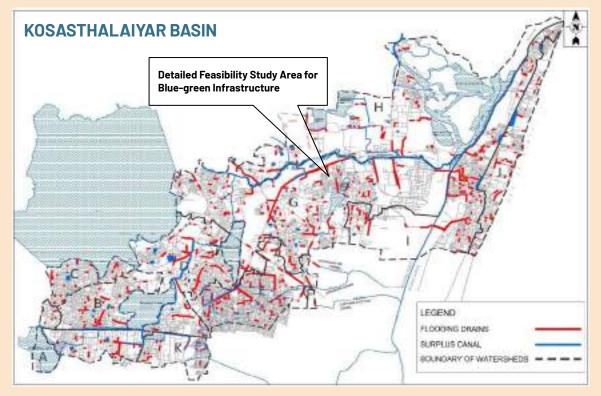
Engagement with Technical Stakeholders to identify priorities by Character Zone

[Left to Right]: 1) Estuarine Residential Zone, 2) Forested Institutional Zone, 3) Riparian Infrastructural Zone, 4) Riparian Peri-urban Zone, 5) Reservoir Industrial Zone, 6) Headwaters Rural Zone

Estuarine Zone: Ecological and cultural linkages between the river and sea

Industrial Zone: Eco-industrial Parks and Ecological Buffers with Recreation around Lakes

Peri-urban Zone: Proactive conservation of wetlands and streams for green growth



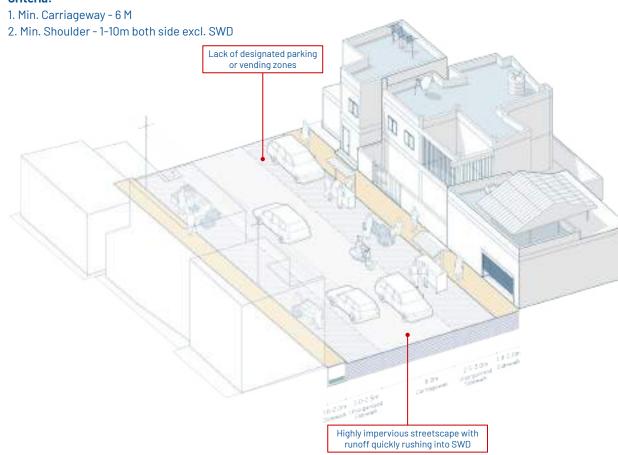
Water-sensitive Urban Design and Sponge City Framework

Detailed Feasibility Study for Blue-green Infrastructure

Stormwater drains are designed to manage runoff from 2 and 5 year return period storms. In a changing climate, this will not be sufficient. Can blue-green infrastructure handle extreme storms more cost-effectively than gray infrastructure?

Likelihood of Experiencing 2-year return period storms				
In any given year	50%			
Over 2 years	75%			
Over 5 years	97%			
Likelihood of Experiencing 5-year return period storms				
In any given year	20%			
Over 2 years	36%			
Over 5 years	67%			
Likelihood of Experiencing 25-year return period storms				
In any given year	4%			
Over 2 years	8%			
Over 5 years	18%			

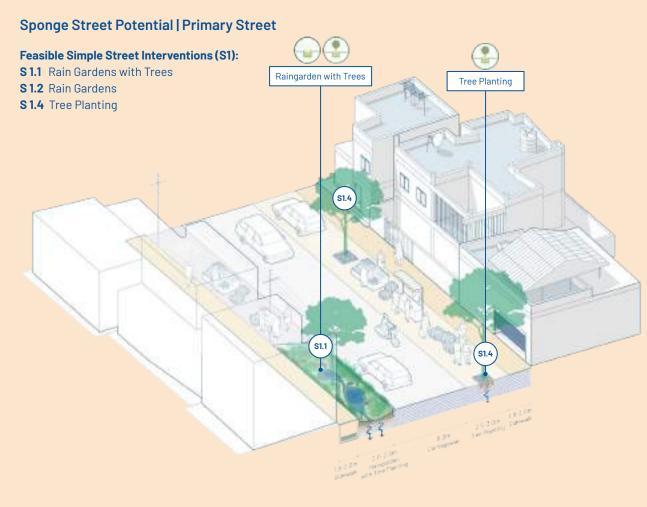
Stormwater drains in Kosasthalaiyar Basin where capacities would exceed during a 5 year return period storm

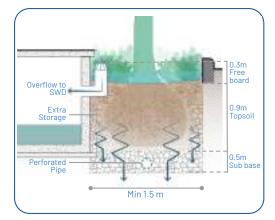

We determined the spatial feasibility of BGI within the urban fabric and tested their hydrological impact

DETAILED FEASIBILITY: MATHUR-PERIYATHOPPUR CATCHMENT | Primary Streets

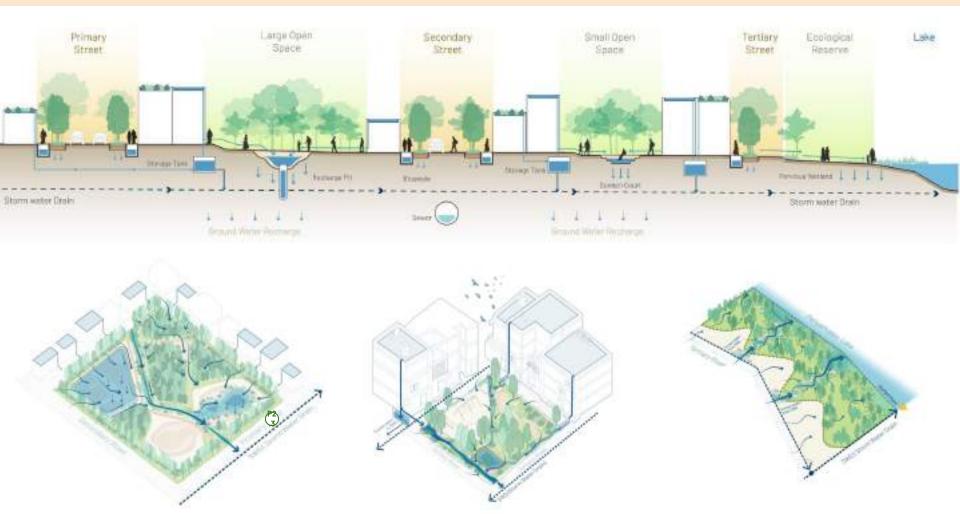
Sponge Street Potential | Primary Street

Criteria:

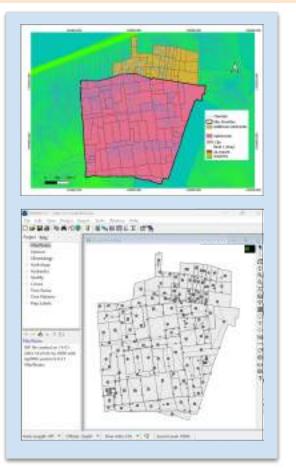

Site Photo of Identified Primary Street


Identified Primary Streets

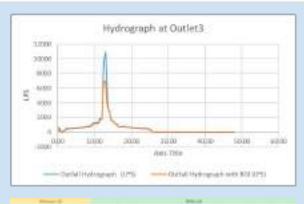
DETAILED FEASIBILITY: MATHUR-PERIYATHOPPUR CATCHMENT | Primary Streets


S 2.1 Rain Garden with Storage

Reference Images

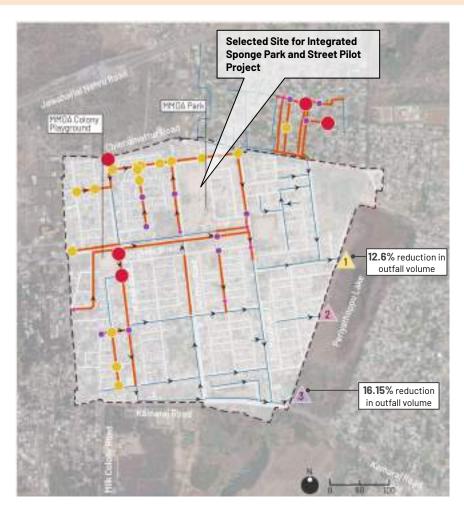


DETAILED FEASIBILITY: MATHUR-PERIYATHOPPUR CATCHMENT | Sponge Streets and Open Spaces



DETAILED FEASIBILITY: MATHUR-PERIYATHOPPUR CATCHMENT | Quantifying Sponge Infrastructure Impact

Dynamic Hydrological Modeling


And Address of the other	-	CONTRACT	and the second second	Total Indication in Indianation Concept control and		Tabure II	Test minutes i		Induced II
3.0	0.54	A160		108	1.18	10,00	8.46	8,0800	1000
4.0	4.00	4-11	B18.00	8.00	641	10.14	0.04	0.0011	4
1.10	3.08	10107	803.00	104	1.14	10.10	0.24		
- 1.0	1.00	1.00			1.00	46.4	0.08	10.000	
6.5	4.06	100	1.46	4.0	1114	80.8	8.78	31200	
		(0.4)	104.00	10.0	1.00	1.04,14	1.04	6.000	
1.0	10.000	10.15	200.000	+ 12	1100	80.74	0.78	+114	
4.5		10.00	20.00	0.04	3.80	48.75	0.28	1.465	
	0.001	100.00	(10.00)		1.00	041.04	0.00	0.0444	
1.1	1.10	10.11	25.00	8.00	1.80	10.05	0.04	1110	- 14
	8.00	100.00	(11)	1.0	1.18	1 10.44	0.08	1.000	
5.4	4.00	46.74	- 2014	108	1.4.4.	107.84	0.10	magine.	41.
6.2	1.000	10.10		1.07	1.00	10.85	0.06	0.000	
	414	100.01	100.00	1.14	1.14	86,34	-1.14	1480.01-	. 40
- 64	1.00	75.66		1.00	1.14	55.81	10.44	1.8844	- 41
- 14	1.00	10.00	440	.0.00	1.14	94,0	12.8.4	0.4811	
6.0	6.00	- M.H.	201.00	316	14.04	10.44	1.48	1.06.04	47
1.1		100,010	1.175.00	1.14	2.88	K(a, 8.0)	10.14	6.28%)	
6.0	. 446	10.11	20.40	1.4	0.06	50,84	0.16	4.4644	
6.8	1.10	10.24	20.00	8.4	3.46		0.16	1.454	
4.4	1.00	340.410	100.00		1.58	10,11	0.08	a pire-	
. 64	1.00	16.75	25.00	1.0	0.14	NO.	ia.14	1.040	
81	1.1.14	10.70		18.56	1.14	10.84	0.44	0.7981	
10.0	5.00	101-01	100.000	0.04	0.06	04,54	0.44	1.000	40
- 44	1.146	108	146	100	1.46		8.24	1997	
	1.100	1.10	5.00	8.07	11.04	. 10,11	1.86	1.00%	
6.8	1.446	1.04	540	264	1.14	50,84	1.14	1.148	41
· 11	1.00	104	1.00	4.8	1.10		1.00	0.000	
	1.00	-	1.00	816	1.00	10,44		1.11100	
	1.1.6.80	100	4.46	100	1.44	40,11	4.00	1.146	
	1.00	100	1.00	110	11.54	40.54	1.94	3-0000	
1.0		100		1.00	2440	94,34	0.04	to Assess	

Field Visit & Soil Conductivity Testing

10000

Simulation results from 5, 10, 25 year R.P storms with and without blue-green infrastructure

DETAILED FEASIBILITY: MATHUR-PERIYATHOPPUR CATCHMENT | Quantifying the Sponge Infrastructure network

Proposed BGI network can prevent flooding in a 25-year R.P. storm for an investment of ₹ 7.98 Crores

How much would it cost to upgrade stormwater conduits to prevent flooding from a 25-year storm? ₹ 17.3 Crores

BGI investment results in a $\underline{\mathbf{\xi}}$ 9.32 Cr savings on top of offsetting losses from more extreme storm events and provides the following benefits:

	Baseline (Without BGI)	Interventions (With BGI)
Runoff (in million L)	122.61	111.88 (-8.75%)
Infiltration (in million L)	68.40	74.12 (+8.3%)

Duration of Flooding in Junction during 5 yr. R.P. storm

- Less man is minut
- 15 30 minutes
- 30 45 minutes
- 45 60 minutes

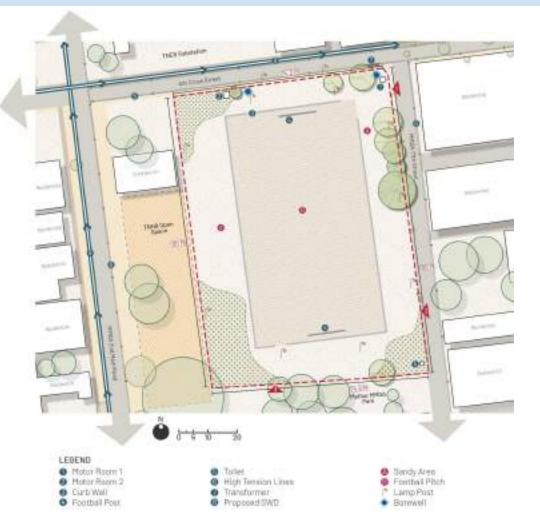
🕖 More than 1 hour

Flooding in Conduits during 25 yr. R.P. storm

- Peak runoff exceeds designed capacity without BGI interventions
- Peak runoff does not exceed designed capacity in any scenario

Integrated Sponge Parks and Sponge Streets

PILOT PROJECT | Integrated Sponge Park at Mathur MMDA Football Grounds


MMDA Playground - Football Pitch

North Side Compound Wall

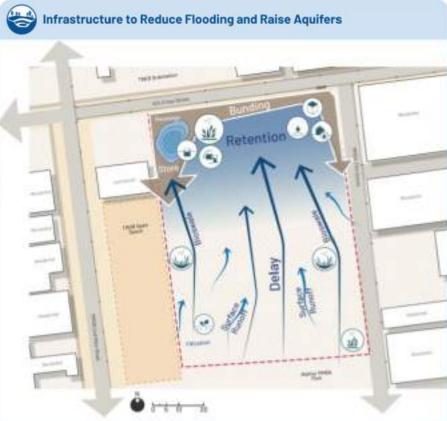
Adjacent TNHS Open Space

Pilot project will integrate social amenities with blue-green infrastructure

Green

Blue

Socia


PILOT PROJECT | Sponge Park Framework

PILOT PROJECT | Sponge Park Framework

PILOT PROJECT | Community Engagement to gather comments and validate vision for site

Happy to see a park like this in our community which has no breathing space for old people and women like us

-Elderly man & Woman from the RWA

PILOT PROJECT | Integrated Sponge Park Framework at Mathur MMDA Football Grounds

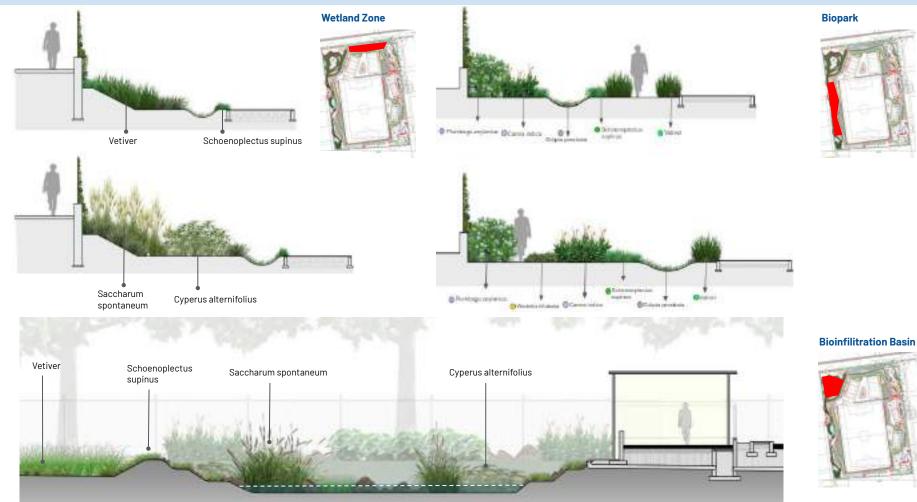
PILOT PROJECT | Sponge Park as Social Amenity and Gathering Space

PILOT PROJECT | Sponge Park as Social Amenity and Gathering Space

PILOT PROJECT | Sponge Park as Recreational and Wellness Hub

Kabaddi Court

PILOT PROJECT | Sponge Park as Recreational and Wellness Hub


PILOT PROJECT | Sponge Park as a Cool and Biodiverse Urban Habitat

PILOT PROJECT | Sponge Park as a Cool and Biodiverse Urban Habitat

PILOT PROJECT | Planting Strategy

PILOT PROJECT | Planting Guidelines and Maintenance Manual

Annexure 3: Planting Strategy and Maintenance Manual C.1 Species Recommendation and Maintenance Manual for Sponge Street Interventions 5115-512 - Rain Serden & Rain Garden with Trees

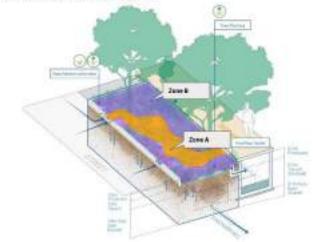


Fig.1-Of Journment size of Kathleman and Trees (maps Dealer Sprage Dolamonics)

Richersteine Ellikeiz Salogarden i Salogarden und Toest	Revolution of Structure / Devolution / Totalie 2 cone A 1 detrive determinet. Explorative minimum, Carear modelse. Copers variable international Schlorance planter international 8. Art New department 8. Art New department	Buil Mixture Zane A Sanis Joan and this at 50% Zefs. IBN	Maintenance Antivity	
			 Integers the plants suring purpose and string purpose and string purpose and string output of terms periods or fermionic memory or equival priods in a month 	
	Zane B . Pry a realition. Divisionmente fruktiona. Richtena auspieren. Cerchilige architelitan. Nyreiden despitien. Distributierum annulation. Networks stankisken Networks stankisken Networks stankisken	Zane B bard loan and Vay at 80% 35% 10% with immostration 80%		

Trees		
Bauhinia purpurea	Purple orchid	
Cassia fistula	Golden shower	
Mimusops elengi	Purple orchid	
Pongamia pinnata	Pungam	
Shrubs		
Alpinia pulpurata	Ginger	
Canna indica	Indian shot	
Colocasia esculenta	Yam	
Hygrophila auriculata	Neermulli	
Ocimum tenuiflorum	Tulsi	
Plumbago auriculata	Forget me not	
Tabernaemontana	Crape jasmine	
Grasses		
Cynodon dactylon	Arugampul	
Cyperus alternifolius	Umbrella palm	
Chlorophytum comosum	Spider plant	
Eclipta prostrata	Karisalan kanni	
Saccharum spontaneum	Kans	
Schoenoplectus supinus	Scirpus	
Vetiveria zizanioides	Vetiver	
Cynodon dactylon	Arugampul	
Climbers		
Passiflora incarnata	Krishna kamal	

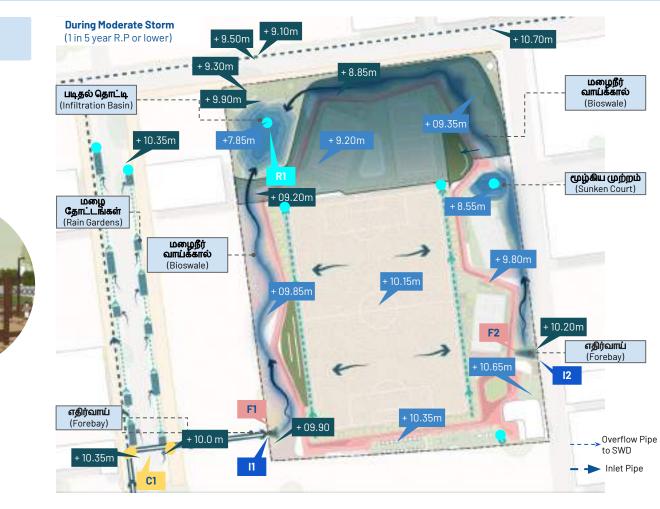
BGI are dynamic systems that depend on healthy vegetation to delay, infiltrate, store and cleanse the stormwater runoff.

A dedicated maintenance program is important to sustain them to be effective and aesthetic.

Maintenance Manual offers set of guidelines to maintain urban vegetation, for:

- Rain Garden
- Bioswale
- Tree Planting
- Soil Amendment
- Infiltration basin.

PILOT PROJECT | Sponge Park as Blue-green Infrastructure



Infrastructure to Reduce Flooding and Raise Aquifers

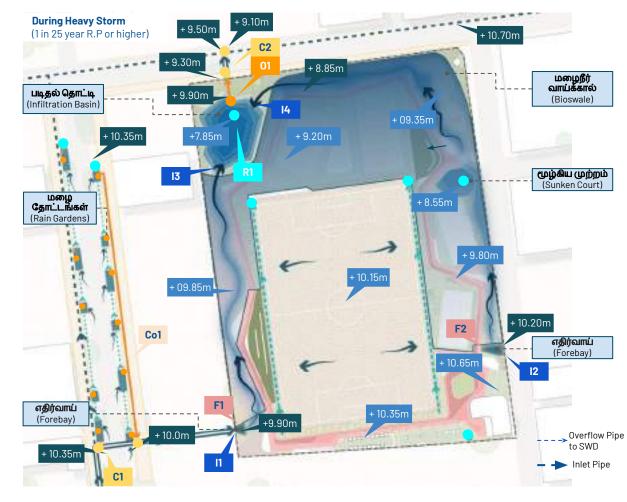
Infiltration Basin

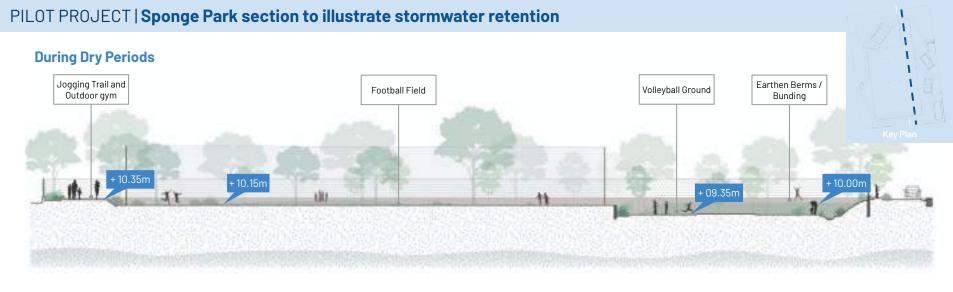
Bioswale

Forebay

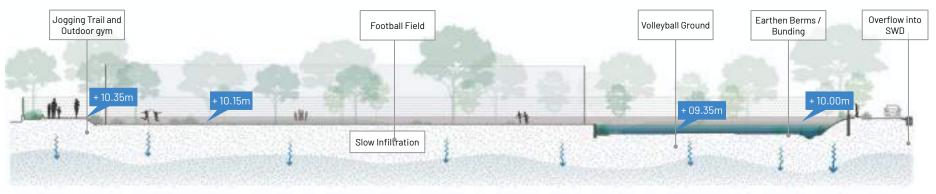
PILOT PROJECT | Sponge Park as Blue-green Infrastructure

Infrastructure to Reduce Flooding and Raise Aquifers

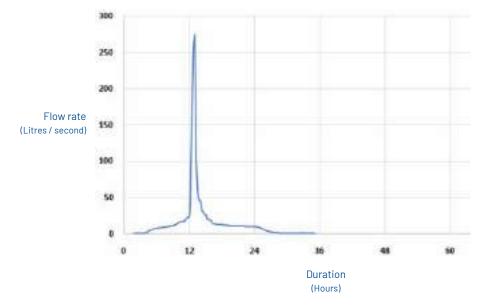

The Proposed "Sponge Park" receives water inflow from majorly through two inlets respectively **11** and **12**.


During moderate storms, the inflow through **1** and **12** will be stored in lower sections of the park and allowed to infiltrate through soil and bore wells.

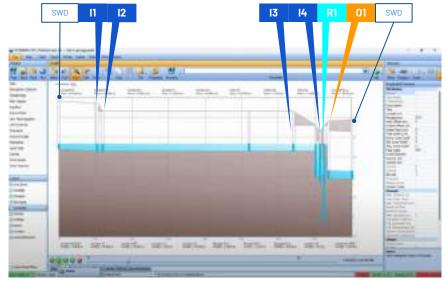
During heavy storms, the park and the infiltration basins with recharge wells fill up.


Overflow from storm events in exceedance of 25 year R.P. are directed to stormwater drains with significant lag time.

STORAGE	Area (m²)	Volume (m ³)
Raingardens (R.G) on Street	84 m ²	100 m ³
Sunken Court (Red Hatch)	56 m ²	12 m ³
Infiltration Basin (Green Hatch)	255m ²	355 m ³
Shallow Park Grading	1190 m ²	328 m ³
Deep Park Grading	1567 m ²	862 m ³
TOTAL	3152 m ²	1,657 m ³


During Storms

Section 1-1


PILOT PROJECT | Hydrological Modelling

- The Proposed Sponge Park receives water inflow through two inlets.
- The total inflow over 24 hours during a 25 year return period storm through inlet 11 is **1,992 m³**, which is contributed from west of sponge park.
- The total inflow through inlet I2 is **545 m³**, which is contributed from east.
- The sponge park is able to store and infiltrate **3,797 m³** of runoff volume.

Total Inflow Volume into Sponge Park through I1 during 25 year R.P. storms

Dynamic Simulation of 25 year R.P. storm over 24 hour period

PILOT PROJECT | Flood Mitigation Functions of Sponge Park

What we have learnt

- **Strategic Planning:** Undervalued but critical for rapidly growing urban areas exposed to multi-hazards. Without planning small projects will be negated by unplanned regional development
- **Prioritization:** No clear guidelines or basis for prioritization of DRM projects esp. Lack of multi-sectoral projects in the pipeline because of underemphasis on strategic planning
- **Project Planning and Design:** Siloed approach for mono-functional projects even within "integrated" projects. Aquifer recharge potential of flood mitigation infrastructure not considered
- **Procurement:** Prohibitive requirements and lowest-cost model inhibits innovation and involvement of qualified consultants in public sector projects

What we have learnt

- **Detailed Design:** Prevailing standards and capacities lead to traditional gray solutions. Lack of design guidelines on NbS
- **Finance:** Lack of consideration of co-benefits, 0&M costs over time, and resilience to climate change
- **Construction:** Lack of qualified vendors and consultants due to tendering practices and absence of products not mandated by regulations
- **Operation & Maintenance:** Requires capacity building at urban local body levels and considerations during design and financing of project
- **Repurposing:** Lot of opportunities for retrofitting streets and open spaces but require design expertise and consortium of consultants / departments to implement

Points for Discussion

- Institutional Reform: Design Manuals and Standards at National Level (CPHEEO), Regulations and Bylaws at Local Level (Risk-sensitive Land-use Planning, Stormwater management Guidelines)
- **Capacity Building:** Updating Engineering Curriculum at National Level, Training for Municipal Engineers and Maintenance Personnel at Local Level
- Inter-governmental and multi-scalar Coordination: Coordination of blue-green infrastructure strategies and investments at metropolitan, municipal, and ward levels
- Inter-departmental Coordination: Coordination for the integration of multiple systems for implementation and maintenance of blue-green infrastructure (Public Works Department with Department of Roads, Stormwater, and Park)
- **Procurement Reform:** Prohibitive qualifications for Municipal and Multilateral procurement for innovative firms in blue-green space competing against low-bidding firms with decades of gray infrastructure experience
- **Green-Blue / Climate Financing:** Unlocking new finance models including blended finance, public-private collaborations to finance the planning, design, implementation and maintenance of blue-green infrastructure

