Transfer to green in sorting station at Greater JerashMunicipality

| 2.August. 2023

The purpose of the report.
The purpose of the report is to show the general concept of transferring the station to a green station by reducing energy efficiency and reducing carbon emissions.

The main topics for transforming the station into a green station.
The main Topics that will be focused on reducing carbon emissions and reducing energy efficiency are as follows:

1. Increasing the green area through agriculture.
2. Reduce electricity consumption.
3. Reduce fuel consumption.
4. Increasing the quantities of recyclable materials, which leads to a reduction in carbon emissions (reducing landfilling).

The details of the topics

First: Increasing the green area through agriculture.
The aims of this topic are to increase the green atmosphere through agriculture; Therefore, we will aim to plant 50 trees of the Zinzelacht type as suggestion.

Estimated budget

S\#	Description	Area	Unit Price (JD)	Total Price (JD)
1	Plant 50 trees	LS	10	5,000
2	Irrigation Network	LS	1	10,000
Total (JD) 15,000				

Second: reduce electricity consumption.
The electricity monthly invoice around 150 JOD, and all of lighting system is Not energy saving.
The table below shows the estimated carbon emissions currently in the station.

	Total Consumption	Total	Unit	CO2e emission factor	Emissions (kg CO2e)	
Total Electricity consumption for reporting period (in kWh), including renewable electricity	590		590	kWh	0.2988	

The estimated budget for build solar energy system.
The details of solay energy system
The calculations to establish solar system.

Monthly kWh Usage	Typical System Size	\# of panels (375W)
600	4.30 kW	12

The estimated budget for establish the system.

S\#	Description	Area		Unit Price (JD)
1	Solar energy system 4.3 KW - 3 phases	LS	25,000	$\mathbf{2 5 , 0 0 0}$
Total (JD)		$\mathbf{2 5 , 0 0 0}$		

The reduce in carbon emissions after established the solay system.

| | Total Consumption | Total | Unit | CO2e
 emission | Emissions (kg
 CO2e) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Total Electricity
 consumption for
 reporting period*
 (in kWh), including
 renewable
 electricity | 270 | 270 | kWh | 0.2988 | 80 |

Third reduce fuel consumption for the recyclable collection vehicles.
The Jaresh Municipality has one compactor to collect recyclables materials form the commercial sector within the town. This vehicle consumption per month 1500 JOD than equivalent 2000 litter Disel.

There are two ways to reduce the fuel consumption:

1. Use another electric vehicle.
2. Improve the routes for collection the recyclable materials.

When using the electrical vehicles, the estimated recover per $\mathbf{6 0} \mathbf{~ k m}$ is $\mathbf{2 5}$ JOD the type of this vehicles Electric Garbage Trucks tucks that will be charged using the on-site solarPV system that will cover the annual electricity needs for the buildings and the transportation. Sample ofthese truck are mentioned in (https://insideevs.com/news/339659/byd-will-deliver-first-electric- garbage-trucks-in-seattle/)

Estimated budget for purchase electrical vehicles.

S\#	Description	QT	Unit Price	Total Price
$\mathbf{2}$	Electric 6 m 3 Compressed garbage truck	Y	(JD)	(JD)
		I	40,000	$\mathbf{4 0 , 0 0 0}$

Improve the fuel consumption through routes system.

S\#	Description	QTY	Unit Price (JD)	Total Price (JD)
I	Make routes for 2 collection cars within two rounds to save 30\% of fuel consumption.	I	4000.00	$\mathbf{4 0 , 0 0 0}$
$\mathbf{2}$	Assessment of collection pathways.	I	1000.00	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{3}$	Create a new track report.	I	1000.00	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{4}$	Training drivers on new tracks.	I	1000.00	$\mathbf{1 0 0 0 . 0 0}$
$\mathbf{5}$	Supply of two devices GIS	$\mathbf{2}$	800.00	$\mathbf{1 6 0 0 . 0 0}$
$\mathbf{6}$	Laptop supply.	I	800.00	$\mathbf{8 0 0 . 0 0}$
			Total (JOD)	$\mathbf{9 4 0 0 . 0 0}$

The reduction of fuel consumption

Item	Cost (JOD)
Fuel consumption before application routes	1500
The reduction rate	(450 JOD) 30%
Fuel consumption after application routes	1050

Fourth: increasing recyclable materials received by the station.
Increasing quantities for the sorting and recycling station reduces carbon emissions by landfilling.

Item	Estimated cost (JD) - monthly	Notes
Salaries and wages (station staff)	4,300	6 workers, I foreman, I station manager.
The cost of collecting materials to the recycling station (fuel)	1,500	Maintenance of presses, ropes.
Administrative expenses (maintenance, simple equipment renewed monthly)	100	Municipal bills
Electricity cost (per month)	I32	6032
Estimated operational cost per month (JD)		

The cost of transportation, collection, and landfill per ton to the municipality is 40 JOD, which saves the municipality 240 JOD per day.
The reduction in carbon emissions when transferring 4 tons to sorting station.

Sorted by categories of Waste					
Productio n primary	Metals	Saved by Recycling	Production primary	Glass	Saved by Recycling
160.5	Energy (L of petrol)	124.0	59.1	Energy (L of petrol)	28.9
4,720.0	Water (1)	2775.4	400.0	Water (1)	196.0
350.98	Emissions (kg CO2-eq)	331.85	50.00	Emissions (kg CO2-eq)	47.04
814.0	Landfill Space (1)	797.7	215.1	Landfill Space (1)	210.8
Productio n primary	Paper	Saved by Recycling	$\begin{gathered} \hline \text { Production } \\ \text { primary } \\ \hline \end{gathered}$	$\begin{gathered} \text { Organic } \\ \text { (composted) } \end{gathered}$	Saved by Recycling
1,406.3	Energy (L of petrol) Water (I)	$\begin{gathered} 362.8 \\ 28560.0 \end{gathered}$	95.00 2,958.6	Emissions (kg CO2-eq)	8.00 2958.6
1,000.00	Emissions (kg CO2-eq)	492.00	Production Primary	Sanitary (mostly plastics)	Saved by recylcing
8,928.6	Landfill Space (1)	5357.1	5.1	Energy (L of petrol)	-
14.815	Trees	15.873	124.7	Water (1)	---
Productio n primary	Plastics	Saved by Recycling	143.65	Emissions (kg CO2-eq)	---
256.3	Energy (L of petrol)	63.8	8.8	Landfill Space (1)	---
6,233.3	Water (1)	3235.8	Production Primary	Mixed	Saved by recylcing
143.65	Emissions (kg CO2-eq)	22.77	8.7	Energy (L of petrol)	硣
4,545.5	Landfill Space (1)	2500.0	229.8	Water (1)	---
113.9	Mineral Oil (1)	62.6	300.33	Emissions (kg CO2-eq)	---
			15.6	Landfill Space (1)	---

The total estimated budget

S\#	Description	Area	Unit Price (JD)	Total Price (JD)
I	Plant 50 trees	LS	IO	$\mathbf{5 , 0 0 0}$
2	Irrigation Network	LS	I	$\mathbf{1 0 , 0 0 0}$
3	Solar energy system 4.3 KW - 3 phases	LS	25,000	$\mathbf{2 5 , 0 0 0}$
$\mathbf{4}$	Electric 6m3 Compressed garbage truck	I	40,000	$\mathbf{4 0 , 0 0 0}$
5	Improve fuel consumption through routes	I	9400.00	$\mathbf{9 4 0 0 . 0 0}$
6	Implantion recycling plan	I	2000.00	$\mathbf{1 0 , 0 0 0 . 0 0}$
Total (JD)				$\mathbf{9 9 , 4 0 0}$

