Green infrastructure: Guidance and recommendations for overcoming the implementation gap

Partners of Connective Cities

Federal Ministry for Economic Cooperation and Development

Commissioned by

Daphne Gross Jansen - Federal Ministry for Economic Cooperation and Development (BMZ), Germany

Opening Remarks

Time (CEST)	topic	speaker					
PART 1: Experience	es and good practices for design, implementation	n, planning and governance of UGI					
in cities	in cities						
14:15-14:25	Key (institutional) barriers for implementing	Bettina Wilk, ICLEI					
	Urban Green Infrastructure in cities & peri-						
	urban areas						
City experiences in	overcoming barriers to design, implementation,	governance of UGI					
14:25-14:30	Green corridor in Campinas-Brazil	Gabriel Dias Mangolini Neves,					
		Campinas-Brazil					
14:30-14:35	Water Security: through the lens of multi-	Eddy Chikuta, Lusaka Water					
	stakeholder collaboration	Security Initiative					
14:35-15:00	Moderated conversation	Connective Cities-GIZ					

Bettina Wilk, ICLEI Europe

Key barriers for implementing Urban Green Infrastructure in cities & peri-urban areas

Key barriers for implementing Urban Green Infrastructure in cities & peri-urban areas *Betting Wilk, ICLEI Europe*

Network Nature

Context

To systematically bring nature back to cities, the EU Biodiversity Strategy calls upon cities with over 20,000 inhabitants to develop **Urban Greening Plans** by the end of 2021.

Urban Greening Plans as **opportunity for institutionalizing Urban Green Infrastructure** in nature-inclusive urban planning, other related policy areas and integrated approaches

"A strategically planned network of natural and semi-natural areas designed and managed to deliver a wide range of ecosystem services such as water purification, climate mitigation and adaptation" (European Commission, 2016)

Combine green-grey / **multi-functional use** of space

Ensure **connectivity** of blue-green spaces

Imitate/restore structural and ecological diversity

Implementation gap prevents swift up- and outscaling of Green Infrastructure

This work has been funded by the German Environment Agency (UBA) in the context of the Klimaresilienz in Europa project (FKZ 3719 48 104 0)

Main barriers to implementation of integrated urban greening strategies

Type of barrier	Barriers mentioned
Political factors (i.e. political commitment, policy consistency, public awareness, political priorities etc.)	No prioritisation of NbS in land use decisions as a result of competing interests and high competition over space in urban areas (housing and infrastructure development) Lack of involvement of citizens in decision making processes and co-design of NbS
	Lack of binding long-term regulatory frameworks and legislation which require compliance across all government levels;
Organisational & institutional factors	Absence of a governance framework with clear responsibilities and mandates across levels to engender accountability, and with it, consistent execution of measures and transparency;
(i.e. expanded mandates/statutes, institutional routines, cooperation/coordination among departments, across policy levels with private actors)	 Responsibilities for nature conservation, urban (green space) planning, public health, etc. are divided up and have their own structures, goals, logics of acting; environmental departments often lack financial and human resources; Lack of coordinated decision-making at city level and collaboration across governance levels to co-develop mutually reinforcing objectives across scales (no landscape planning approach)
	Cost-effectiveness analysis does often not feature all positive effects of urban green, i.e.

on public health, ecosystems, quality of life; this results in decisions favouring other land

7

Main barriers to implementation of integrated urban greening strategies

Type of barrier	Barriers mentioned
Cognitive factors (i.e. such as perceived sense of urgency, problem awareness)	Perception of higher costs and lower effectiveness associated with NbS by city planners and decision makers which favours conventional grey infrastructure Need for citizen-inclusive narratives for the future reflecting values that implicitly integrate the biodiversity and climate agenda
Resources (i.e. knowledge & expertise, financial and human resources)	Lack of large scale, blended financing solutions for NbS with private sector involvement Need for tools assessing and illustrating NbS benefits, and guidance for UGP.

5 Recommendations for Urban Greening Plans

1

should *develop as part of an integrated, overarching city strategy* issued at high level; be *action-oriented* and perform as a comprehensive implementation plan with clear targets, timelines, and responsibilities;

include a *participation strategy for all relevant actors* and should be accompanied by a communication- /narrative guideline to raise awareness about ecological and social benefits of NbS;

prioritise nature and biodiversity over competing land use and single-sector objectives;

should include measurable targets and require regular reporting against *SMART indicators*, consistent with related international, European, and national targets;

should be *linked to existing funding options* (i.e. streamlined with other sector programmes at EU/national level), co-investment models and co-financing mechanisms that recognize the *potential of co-benefits and revenue generation* of urban greening actions.

Mapping of NbS Knowledge & Implementation Gaps

Desk Study

→ **19 Publications** analysed : grey literature and scientific papers

ightarrow 142 gaps categorized into 27 broad gaps identified

Online Survey

 \rightarrow 45 respondents : $\frac{1}{2}$ academics and $\frac{1}{3}$ stakeholders (national policy makers, NGOs and SMEs)

→Identified **29 unique knowledge and implementation gaps** relevant to NBS

Knowledge gaps results profile

Knowledge gaps database

Network Nature

JOIN INTRODUCTION HELPDESK LOG IN

Nature-based solutions knowledge gaps

Explore the nature-based knowledge gap analysis below to help identify future avenues for research.

The knowledge gap database compiles an evidence base for nature-based solutions, to support defining research and innovation avenues, bolster policy and practitioners' knowledge and knowledge-implementation. The database gathers 'gaps' collected through desk study and online consultations from August to October 2021. 171 knowledge gaps were collected and categorized into 30 broad gap topics. This database will be updated during the course of the NetworkNature .

Displaying 1 - 20 of 171

TEXT SEARCH

Enter search terms:

BROAD TOPIC

- Any -

APPLY

Gap Description	Origin of source	Source	Resource	Broad topic
Thus, there is a significant lack of understanding regarding the conditions under which nature-based solutions achieve impacts, and especially social and health impacts.	Desk Study	Academic literature	Dumitru, A., Frantzeskaki, N., Collier, M., 2020. Identifying principles for the design of robust impact evaluation frameworks for nature- based solutions in cities. Environmental Science & Policy 112, 107–116. <u>https://doi.org/10.1016/j.envsci.2020.05.026</u>	 Cost/benefit evaluations Impacts for health and well-being

 \sim

- ➔ Networknature.eu
- Martin Marti
- MetworkNatureEU
- in NetworkNature
- NetworkNature

The sole responsibility for any error or omissions lies with the editor. The content does not necessarily reflect the opinion of the European Commission. The European Commission is also not responsible for any use that may be made of the information contained herein.

Network Nature

Pooling resources for the nature-based solutions community

Gabriel Dias Mangolini Neves, Environmental Licensing Support Coordination of the Secretariat for Green, Environment and Sustainable Development of Campinas- Brazil

Green corridor in Campinas-Brazil

Eddy Chikuta, Lusaka Water Security Initiative

Water Security: through the lens of multi-stakeholder collaboration Eddy Chikuta Lusaka Water Security Initiative

LuWS

The Lusaka Water Security Initiative

https://www.luwsi.org/

• Currently has 33 partners

- Partnership Activities are
 coordinated by: Lusaka Water
 Security Initiative (LuWSI)
 Secretariat and lead project
 partners
- Lead project partners: Lusaka City Council (LCC) and Lusaka Water Supply and Sanitation Company (LWSC), Zambia Chamber of Commerce and Industry (ZACCI), WWF Zambia, WaterAid.

LuWSI's Value proposition

- Entrench a collective understanding of water security
- Provide partners an opportunity to leverage the strength of multi-stakeholder collaboration
- Provide a platform for partners to discuss, harmonise and synchronise their work
- Help different actors realise synergies: resource pooling
- Act as a container to incubate ideas and projects
- Mobilise new forces to accelerate the delivery of more tangible and sustainable results
- Overall monitoring, evaluation and learning

Results

- Strengthened partnerships in the water sector 33 partners
- Leveraged more than 750,000 Euros in partner support (2021) towards activities and partner strengthening
- Embedding of water security in annual budgets, strategies and work plans of partners – deliberative action
- Water security learning labs & policy brief ICLEI SA
- Enhanced private sector engagement Industrial wastewater management RWSII
- Supported the development of 5 COVID-19 response plans & trained 50 people in citizen journalism
- Improved WASH services in over 100 schools, reaching over 150 000 pupils and 3500 teaching staff, especially in the most vulnerable communities (SB2S Campaign)
- Trained 20 women in fabricating handwash facilities skills development
- Rehabilitation of 11 boreholes, servicing over 400.000 people in marginalized communities
- Developed the LuWSI Strategy and Business Plan 2021 -2023
- Water stewardship activities for private sector, Commercial utilities and communities – 11 CUs officially committed to WS in corporate strategies

https://www.luwsi.org/

Subscribe to our newsletter:

https://nature-stewardship.org/#newsletter

Moderated conversation

Part 2: Training part					
15:00-15:05	Introduction	Bettina Wilk, ICLEI			
15:05-15:30	Meeting the financial challenges facing	Monica A. Altamirano, NOW			
	China's Sponge City Program (SCP)	Partners; Faith Ka Shun Chan,			
	(interactive session)	University of Nottingham			
		Ningbo, China			
15:30-15:55	NBS indicator handbook – NBS monitoring	Laura Wendling, Nature-based			
	and impact evaluation in cities	Solutions Research Team Leader			
	(interactive session)	at the VTT Technical Research			
		Centre of Finland			
15:55-16:00	Closing & Opportunities to stay informed –	Bettina Wilk, ICLEI			
	NetworkNature, NatureWithCities,				
	UrbanbyNature Programme				

University of Nottingham

> Meeting the financial challenges facing China's Sponge City Program (SCP)

Dr Faith Chan¹ & Dr Monica A. Altamirano²

- 1. School of Geographical Sciences, University of Nottingham Ningbo China
- 2. NOW Partners

8 June 2022

Green infrastructure in cities: Guidance and recommendations for overcoming the implementation gap

University of Nottingham

Introduction

Ningbo- October 2013(left) & 26 July 2021 (right) after typhoon Fitow and In-Fa

The initiative of Sponge City Program (SCP)

 The SCP concept adopts alternative methods to transform traditional hardengineering infrastructures into green or blue-green landuse.

University of Nottingham

UK | CHINA | MALAYSIA

 These new generational infrastructures enable to collect, control and reuse stormwater in an ecological pathway, and reduce the urban surface runoff (Chan *et al.*, 2018).

Figure 2 Sponge City concept and idea

The Eco-corridor case – Multiple benefits (Wellbeing)

University of

> Multiple design criteria (flood control, water quality and amenity value)

Stormwater run-off is collected and treated before entering the major waterway.

This process is demonstrated and included in the park program and design for educational purposes.

Wildlife Habitat structures like habitat logs and perch trees are planned along the riparian edge.

Integration with the Urban Fabric:

- a symbiotic relationship between the greenway and surrounding landscape.

Nottingham UK | CHINA | MALAYSIA Sponge City in China – progress

Universitu of

Figure 1. Geographical location of the first (dark circles) and second (light circles) batch of Sponge City pilot cities. (Online version in colour.)

First batch pilot cities: 16 cities Second batch pilot cities: 14 cities

Medium term (2018–2020):
Establishment of Sponge City standards, management systems, and monitoring and early warning systems by 2020; with greater than 20% of municipal areas able to recycle 70% of incident rainfall.

—— Long term (2020–2030):

Complete integration of the Sponge City concept in urban development, planning and construction management by **2030**;

with greater than 80% of municipal areas able to recycle 70% of incident rainfall. 28

SCP investment scheme

University of Nottingham

UK | CHINA | MALAYSIA

Source: Chan and Chen et al. 2022

Local government PPPs and loans Central government Municipal government

SCP Funding scheme

Funding Scheme	Example	Citations
Direct Investment from Central Govt.	• Direct investment of 1.2-1.8 billion to each of the 30 pilot cities	Griffiths et al.; Li et al. , Yang et al. (2020), Chan et al. , Xia et al
Equity/ Environmen tal stocks	Listed corporations in the Hong Kong Stock Exchange market	Sina Finance, 2015
Public- Private Partnership (PPP)	 Chang'an River project (2017-2020) in Dongguan city, Guangdong province. Total investment is 739 million RMB; sources of funds include project company financing and municipal government support (BOT), with 15 year contract. 	Fu and Guo, 2020
Green Bonds	 On August 5, 2019, Chongqing Nanchuan District Urban Construction Investment (Group) Co. issued a non-public green bond for SCP programs. The issuance scale is 1.08 billion with 7 year term and 7.80% issuance rate. In the same year, there existed 1 trillion RMB of green bonds issuance in China. 	Deheng News (2019)
Insurance/ Taxes/ General funds	 Changde City Banking Financial Institutions established a sponge city fund with an amount of 1.499 billion RMB 	Huang (2017)

Using Hong Kong as the investment fund for SCP

(Chan et al. 2022)

Product	Definition	Key players	Examples
Green Bonds	Financial products to finance or refinance fresh or old eligible green projects	Issuers include commercial banks, corporations, asset-backed security, HKSAR government, policy banks	HKSAR Government Green Bond
Green loans/ Green credits	Loan instruments available to exclusively invest or re-invest in qualified green projects	Banks would provide green loans or credit lines for clients or projects that are making contribution to the overall sustainable development goals of the banks	Alliance for Green Commercial Banks
Green equity investment	Investors use a range of strategies, including positive/negative screening, ESG integration	Investors provide capital for companies that bring positive influence to environment and society. Investors can reduce their environmental risks across their portfolios.	Green Index and Green Derivative
Green funds	These are significantly taking environmental issues into consideration in investment strategies, with ethical avoidance criteria	Fund managers: define a specific theme for the funds and offer to fund eligible companies or projects with strong environmental credentials Green label and certification schemes: indicate the greenness of the funds.	Green Tech fund

University of Nottingham UK | CHINA | MALAYSIA

EU NBS Green Financing – case and examples

Discussion – Monica

Global Top 100 University

CONCLUSION

Take-home messages:

- Sponge City Program at the cross-road on financing
- The Central National Govt. halted direct investment since 2018 to the program
- Linking the green investment via Hong Kong and taking opportunities on SCP financing
- Learning from the EU lessons Monica

Please contact me and Monica at <u>faith.chan@Nottingham.edu.cn</u> and monica@now.partners

Refer to: https://www.sciencedirect.com/science/article/pii/S2772411522000118#bib0036

What is your most important challenge in upscaling UGP?

- a. Designing a blended finance arrangement
- Engaging with the private sector / Public-Private engagement/ Structuring a co-financing arrangements
- c. Showing cost-effectiveness of NBS versus traditional infrastructure
- d. Drafting a performance-based contracts/ Reliable and professional suppliers
- e. Developing the investment case of multifunctional investments
- f. Monitoring systems
- g. Risk management protocols for construction and maintenance
- h. Budget for sustained maintenance

University of Nottingham

Q&A session

CLOSING THE IMPLEMENTATION GAP

Handbook for the Implementation of NBS

Creating demand for investments in naturebased solutions

Governance structures for collective investments Creating markets for implementing naturebased solutions

> Market sounding + blueprint for P3

Financing Framework for Water Security

Collaborative modelling protocols to structure bankable propositions

Handbook offers:

- A step by step guide for developing NBS business case: how to choose a mode of governance for the project, a funding strategy, a financing strategy and a procurement strategy (Chapter 1)
- a project preparation facility toolbox: a toolbox with a compendium of all the analysis grid, checklist, methods to prepare in a collaborative way NBS projects and design a complete project preparation roadmap (chapters 1 to 3 and appendixes); starting with an intake assessment form (Appendix A) and in some cases requiring the development or further detailing of the NBS strategy through a strategic planning process (chapter 2), and including collaborative modelling protocols to guide the design of stakeholder engagement workshops.
- illustration and inspiration from three of H2020 NAIAD demo cases in EU and one demo case in Indonesia from the Water as Leverage programme (Chapter 5), as well from pioneering and successful NBS implementation arrangements worldwide (Chapter 6)
- an analysis of barriers for public and private investment in NBS, of the specificities of NBS project (as a systemic solutions, as a "new technology" as well as a living solution with its cyclical and long-term ecological processes), and the bankability implications of building with nature: generally higher risk reward ratio, delayed functionality, non-monetarised benefit thus not translated into revenue streams (Chapter 4).
- Sound basis for capacity development in developing an investment plan

Financing Framework Building Blocks

- Mode of governance
- Funding Strategy 2.
- Financing Strategy 3.
- **Procurement Strategy** 4.

Download handbook

NAIAD project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730497.

level of maturity

Typology of NBS implementation arrangements	Public project procurement	Public commissioner develops a project and tender it in the market through traditional or PPP/ Performance-based contracts	
	Water stewardship	Private company invest and commissions a 3 rd party to implement watershed conservation measures to reduce their water risks	
Download handbook	Collective investment	Entity that pool resources from different beneficiaries and invest them in a variety of NbS and hybrid measures	
	schemes Environmental markets	An ecosystem service itself is marketed and sold as a commodity to a beneficiary (usually an institution rather than individual) in the context of a dedicated market, usually subject to oversight by a regulatory body	

NAIAD project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 730497.

NAIAD

Source: Handbook for the Implementation of Nature-based Solutions for Water Security (Altamirano et. Al 2021)

Project preparation roadmap

Roadmap

The handbook offers comprehensive guidelines including an auto diagnostic questionnaire and several collaborative modelling scripts and formats per module. These elements support the development of a roadmap tailored to the specific needs of the users as well as the design of effective stakeholder engagement workshops. Each module could be completed either based on internal project team meetings and desk research or on collaborative modelling workshops that engage a wider set of stakeholders. The entire project preparation process is graphically represented below, including the building blocks for an implementation arrangement, the business cases, and the project preparation stages.

SCBA: Social Cost-benefit Analysis LCCA: Lifecycle Cost Analysis

¹Ecosystem as building block of a new paradigm for economic development.

With which of these financing mechanisms do you have experience already? or you know are used in your country/ city?

- a. Green bonds
- b. Climate Bond
- c. Environmental / Ecosystem markets
- d. Water Funds
- e. Project Finance / PPPs
- f. Resilience Bonds
- g. Insurance for ecosystems

What do you think any suitable/fit for purpose green financing mechanisms that are particularly suitable for NBS/ Urban Green Plans in the Global South?

- Concessional finance: channeled by Multilateral Development Banks– Low interest /special rate loans and grants
- b. Public Private Partnerships (Project Finance)
- c. Green bonds and securities
- d. Green stocks and shares
- e. Direct investment by the Government (public budgets)
- f. Grants from bilateral donors

Questions?

Mónica A. Altamirano, PhD Partner, NOW Partners Email: <u>monica@now.partners</u> Twitter: @altamiranoCAFF

Phase 2: Commercial, Financial, Management Business Case

Source: Altamirano, M. A., et al. (Forthcoming). D7.3 Handbook for the Implementation of Nature-based Solutions for Water Security: guidelines for designing an implementation and financing arrangement, EU Horizon 2020 NAIAD Project, Grant Agreement N°730497 Dissemination.

Cash profile + Risk profile

These projects have received funding from the European Union's Horizon 2020 research and innovation programme under topic SCC-2-2016-2017: Smart Cities and Communities Nature based solutions

Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners

Laura Wendling on behalf of the NBS Impact Assessment Taskforce

Laura.Wendling@vtt.fi www.unalab.eu @UNaLab_EU

Why do we need to understand the impacts of NBS?

- NBS can support high-level objectives related to climate change adaptation and mitigation, ecosystem and biodiversity conservation and restoration, sustainable development, etc.
- Widespread adoption of NBS and their incorporation within multi-level policy instruments is hindered by fragmented and largely disciplinespecific nature of existing evidence of NBS performance and impact

There is an urgent need to develop an in-depth, common understanding of both the potential benefits of Nature-Based Solutions and any associated trade-offs

Image source: Leo et al. 2021. Chapter 7. Data Requirements. <u>Evaluating the Impact of Nature-Based Solutions: A</u> <u>Handbook for Practitioners</u>.

Integrated NBS Impact Assessment Framework

 Collaboration between 17 EU-funded projects and related programmes to develop <u>Evaluating the Impact of</u> <u>Nature-based Solutions: A Handbook for Practitioners</u> & <u>Appendix of Methods</u>, + <u>Summary for Policymakers</u>

The <u>Handbook</u> serves as a guide to development and implementation of scientifically-valid monitoring and evaluation plans for the evaluation of NBS impacts The <u>Appendix of Methods</u> provides a brief description of each method, along with guidance about the appropriateness, advantages and drawbacks of each in different contexts

Framework of common indicators and methods for assessing the performance and impact of diverse types of NBS:

- A reference for relevant EU policies and activities
- Orients practitioners in developing robust impact evaluation frameworks for NBS at different scales
- Comprehensive set of indicators and methodologies
- Key points highlighted in <u>Summary for Policymakers</u>

Indicators of NBS Performance and Impact

Image source: Wendling et al. 2021. Chapter 4. Indicators of NBS Performance and Impact. <u>Evaluating the Impact of Nature-Based Solutions: A Handbook for</u> <u>Practitioners</u>.

- Key indicators of performance & impact provide information about NBS effectiveness in comparison with defined objectives
- Handbook presents **446 possible indicators** across **12 societal challenge areas**
 - **73 Recommended** indicators that are central to the assessment of main expected outcomes
 - 373 Additional useful indicators that may be necessary to evaluate specific targets, or desirable when additional resources are available for monitoring and evaluation

Please click on the link provided in the chat!

At what point during the adaptive management cycle common to NBS projects should indicators of NBS performance and impact be selected?

- During planning phase ("plan")
- During implementation ("do")
- During evaluation ("check")
- When making changes ("act/adjust")

Indicators of NBS Performance and Impact

Image source: Wendling et al. 2021. Chapter 4. Indicators of NBS Performance and Impact. <u>Evaluating the Impact of Nature-Based Solutions: A Handbook for Practitioners</u>.

- Key indicators of performance & impact provide information about NBS effectiveness in comparison with defined objectives
- Handbook presents 446 possible indicators across 12 societal challenge areas
 - **73 Recommended** indicators that are central to the assessment of main expected outcomes
 - 373 Additional useful indicators that may be necessary to evaluate specific targets, or desirable when additional resources are available for monitoring and evaluation

Selection of indicators can occur at any time during the cycle of adaptive management of NBS

- Initial monitoring and assessment plan identifies "must have" outcomes that can be linked to specific indicators
- Review of planned NBS impact indicators during co-creation process can help to identify potential additional benefits and inform NBS design
- Indicators can be added or replaced at any time in response to observed changes or new challenges (adaptive monitoring)

$Challenge \rightarrow Objective \rightarrow Target$

- Citizens of Summer City have noted that some parts of the city are excessively warm
 - Data show an increase in heat-related illness & mortality
 - Long-term, regional temperature measurements show that the city centre is up to 5°C warmer than the surrounding countryside on hot days
 - Citizens also noted a lack of outdoor recreational areas in many parts of the city, or "unequal distribution" of public parks
- Co-innovation with stakeholders identified NBS as a preferred option to address urban heating.
- Proposed action: depaving of several areas within the city centre & creation of public green spaces with trees & biodiverse greenery; implemention of green roofs & facades on buildings surrounding new public green spaces

- Challenge or problem: Excessive heat in city centre during warm months
- **Objective of NBS action:** Reduce urban heating & increase resilience to future climate warming
- Target: Reduce air temperature in city centre by at least 2°C on hot days

Objective: Cooling the hot city centre

Challenge Categories

- 1. Climate Resilience
- 2. Water Management
- 3. Natural and Climate Hazards
- 4. Green Space Management
- 5. Biodiversity Enhancement
- 6. Air Quality
- 7. Place Regeneration
- 8. Knowledge and Social Capacity Building for Sustainable Urban Transformation
- 9. Participatory Planning and Governance
- 10. Social Justice and Social Cohesion
- 11. Health and Wellbeing
- 12. New Economic Opportunities and Green Jobs

No	Todiactory	Units	Class	Applicability to ${f NBS}^{\dagger}$		
NO.	Indicator			Type 1	Type 2	Туре З
RECOM	RECOMMENDED					
1.1	Total carbon removed or stored in vegetation and soil per unit area per unit time	kg/ha/y	0	•	•	•
1.2	Avoided greenhouse gas emissions from reduced building energy consumption	t CO₂e/y	0		•	•
1.3	Monthly mean value of daily maximum temperature (TX _x)	°C	0	•		•
1.4	Monthly mean value of daily minimum temperature (TNn)	°C	0	•		•
1.5	Heatwave incidence: Days with temperature >90 th percentile, TX90p	No./y	Ο	•		•
ADDITIONAL						
2.10.1	Urban Heat Island (incidence)) °C	ο	•		•
2.10.1	Mean or peak daytime temperature) °C	0	•		•

Mean of daily maxi (TX)	mum temperature	Climate Resilience			
Description and	Mean of the daily maxir	num temperatures observed	Data source		
justification	during specific time period, either for a specific year or		Required data	A time series of air T ^o data (measured in ^o C)	
	increment		Data input type	Quantitative	
Definition ²	Let \mathcal{TX}_{ij} be the maximum temperature at day <i>i</i> of period <i>j</i> . Then mean values in period <i>j</i> are given by: $\mathcal{TX}_{j} = \sum_{i=1}^{I} \mathcal{TX}_{ij} / I$		Data collection frequency	The sensors can collect the data every 10 minutes. In case the effectiveness of a NBS is analysed this should be measured at least hourly. At midday, the cooling effect reaches its maximum so, for example, the heat effect on health can be analysed; at night, the effectiveness is less,	
Strengths and weaknesses	It is a good indicator to minimum temperature temperature effects in t	gether with the mean of daily that can gives an idea of the high urban comfort and human health.		disturbance can be analysed. Regardless of the adaptatic aim, the best time to measure the higher effect on heat reduction is midday, as this is the hottest time of the day	
Measurement procedure and tool	ementSensors: measuring instruments (measurement stationsre andor manual instruments e.g., TESTO multi-function);thermography camera (e.g., FLIR).			where the cooling effect reaches the maximum (Georgi and Dimitriou, 2010; Shashua-Bar et al., 2012; Tan et al., 2016).	
	The average of the summer period can be considered from one spect years		Level of expertise required	The sensors must be calibrated and located in the same place during all the measurement period. Not any sensor is valid	
	Summer is the most co assessed (spring and a	mer is the most common season in which it is ssed (spring and autumn are considered in relatively		Synergies with the mean of daily minimum temperature.	
	fewer studies: e.g., Yar Shashua-Bar L., Tsiros	an H., Wang X., et al. 2012; s I.X., Hoffman M.E. 2010)	Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action	
	literature, but the averative this indicator the avera	age also is relevant and used. For ge is proposed.	Opportunities for participatory data	Participatory data collection is feasible with supervision	
Scale of	It depends on the sense	ors network coverage; it can be a	collection		
measurement	point or in case there a transformed to a grid (t	re several localizations it ca be hrough interpolation)	Additional informat	¹ http://glossary.ametsoc.org/wiki/	
This sounds like a good way to measure longer-term trends, but what if we want to know more specifically about hot days (rather			Mean daily maximum temperature for a month ² <u>https://eca.knmi.nl/indicesextremes/indicesdictionary.php#8</u>		

than a monthly average)?

Urban Heat Island (UHI) effect Natural and Climate Hazards					
Description and	The UHI effect is caused by the absorption of sunlight by		Data source		
justification	(stony) materials, reduced heat caused by human activ	vities. The UHI effect is greatest	Required data	Hourly temperature measurements	
	after sunset and reported to	o reach up to 9°C in some cities,	Data input type	Quantitative	
	e.g., Rotterdam (Van Hove et al., 2015). Because of the UHI effect, citizens living in urban areas experience more		Data collection frequency	Annually; at minimum before and after NBS implementation	
Definition	Urban Heat Island (UHI) effect denotes an urban area that is significantly warmer than its rural or undeveloped		Level of expertise required	Low	
surrounding areas. Expressed and evaluated as temperature (°C).		ed and evaluated as	Synergies with other indicators	Assessed from <i>Mean or peak daytime temperature</i> indicator and connected with <i>Heatwave Risk</i> indicator	
Strengths and weaknesses	 + Fairly easy and straightforward assessment of temperature differences - Requires a rather large amount of temperature measurement stations to holistically identify the effect within the urban area - May require modelling expertise 		Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action	
			Opportunities for participatory data collection	Participatory data collection is feasible through geographically referenced direct temperature measurements if these are not automated.	
Measurement	1. Identify or install one or	more meteorological	Additional information		
procedure and tool	 (temperature) measurement stations within the built environment, and one measurement station outside the city that functions as a reference station. Alternatively, models can be used. 2. Compare the hourly average air temperature measurements of the urban measurement station(s) with the station outside the city (the reference station). 3. Look for the largest temperature difference (hourly average) between urban and countryside areas during the summer months. This temperature difference is an absolute measure of the UHI effect. City to regional scale 		References	 Van Hove, L.W.A., Jacobs, C.M.J., Heusinkveld, B.G., Elbers, J.A., van Driel, B.L., & Holtslag, A.A.M. (2015). Temporal and spatial variability of urban heat island and thermal comfort within the Rotterdam agglomeration. Building and Environment, 83, 91-103. United States Environmental Protection Agency. (2006). Excessive Heat Events Guidebook. Retrieved from https://www.epa.gov/sites/production/files/2016-03/documents/ehequide_final.pdf 	
Scale of			This sounds li	ke it will tell us whether we achieve the target, bu	ıt r2
incasurentelli.		uses this mean that we also have to measure another multator?			

Mean or peak daytime temperature – Direct Climate Resilience measurements		Climate Resilience			
Description and	d Green urban infrastructure can significantly affect climate		Data source		
justification change adaptation by reducing air and surface temperatures with the help of shading and through	Required data	Automated continuous monitoring of ambient air temperature			
	infrastructure can also provide	insulation from cold and/or	Data input type	Quantitative	
	shelter from wind, thereby reduced (Cheng, Cheung, & Chu, 2010)	ucing heating requirements . By moderating the urban	Data collection frequency	Annually; at minimum, before and after NBS implementation	
microclimate, green infrastructure can support a reduction in energy use and improved thermal comfort (Demuzere et al., 2014). The cooling effect of green space results in lower temperatures in the surrounding built environment. A simulation of the surrounding buildings showed the potential for a 10% decrease in the cooling load due to the presence of the green area in the vicinity (Yu & Hien,	Level of expertise required	Low			
	Synergies with other indicators	A prerequisite for <i>Heatwave Risk</i> and <i>Urban Heat Island</i> indicators, and a requirement for <i>Depth to groundwater</i> indicator			
Definition	2006). Mean or peak daytime local ter	nnerature by direct	Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action	
	measurement (°C)		Opportunities for	Participatory data collection is feasible through direct	
Strengths and weaknesses	+ Straightforward assessment + Reliable in the long run	Straightforward assessment of ambient air temperature		temperature measurements if these are not automated	
	- Requires a rather large amount of monitoring stations to		Additional information		
	be installed to monitor various	NBS intervention areas	References	Cheng, C.Y., Cheung, K.K.S., & Chu, L.M. (2010). Thermal	
Measurement procedure and tool	ntAmbient air temperature can be assessed through continuous monitoring of temperature, near the NBS intervention area, and calculation of mean and peak daytime temperature before and after NBS implementation.		performance of a vegetated cladding system on facade walls. Building and Environment, 45(8), 1779-1787. Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Faehnle, M. (2014). Mitigating and adapting to		
Scale of measurement	Plot to district scale	ct scale		Management, 146, 107-115.	

and Buildings, 38, 105-120.

Does this measurement tell us whether we have achieved the target? Do we have the resources and expertise to collect these data?

Measuring the Cooling Effect of NBS

An NBS action was proposed including depaving of several areas within the city centre & creation of public green spaces with trees & biodiverse greenery; implemention of green roofs & facades on buildings surrounding new public green spaces

- Temperature data from measurement stations able to collect data every 10 minutes will provide the information we need for all 3 indicators
- To assess effect of NBS on city temperature we need measurements:
 - In the hot city centre, in close proximity to NBS
 - In the hot city centre, in an area without NBS
- To quantify UHI effect
 - Also need one or more measurement stations in the surrounding countryside

- What do we need to measure?
- What data or data sources are already available?
- How do we get the data (what equipment do we need)?
- Where do we need to take measurements?
- How frequently do we need to take measurements?
- How are the data handled? By whom?
- Do we have the expertise needed to acquire and manage the data?
- Do we have the resources to purchase and maintain necessary equipment?

Generate a Tailored Portfolio of Indicators

- The impacts of NBS actions have very broad impacts consult with experts from a range of different disciplines
- First, consider the main objective(s) of the action
 - What are we targeting?
 - What do we need to measure to know if the objectives have been achieved?
- Next, brainstorm possible additional benefits (cobenefits)
 - What other positive outcomes might we obtain?
 - How can we measure these other benefits?

Consider additional benefits related to climate resilience, water mangement, air quality, green space management, health and well-being, biodiversity, place regeneration

$Challenge \rightarrow Objective \rightarrow Target$

- Citizens of Summer City have noted that some parts of the city are excessively warm
 - Data show an increase in heat-related illness & mortality
 - Long-term, regional temperature measurements show that the city centre is up to 5°C warmer than the surrounding countryside on hot days
 - Citizens also noted a lack of outdoor recreational areas in many parts of the city, or "unequal distribution" of public parks
- Co-innovation with stakeholders identified NBS as a preferred option to address urban heating.
- Proposed action: depaving of several areas within the city centre & creation of public green spaces with trees & biodiverse greenery; implemention of green roofs & facades on buildings surrounding new public green spaces

- **Challenge or problem:** Unequal distribution of public green space within the city
- **Objective of NBS action:** Improve availability and distribution of public green space
- **Target:** Equal access of all urban citizens to high-quality public green space by 2030

Objective: Improve availability & distribution of green space

No.

7.1

7.2

7.3

7.3.1

index

Challenge Categories

- **Climate Resilience** 1.
- Water Management 2.
- Natural and Climate Hazards 3.
- Green Space Management 4.
- **Biodiversity Enhancement** 5.
- 6. Air Quality
- **Place Regeneration** 7.
- Knowledge and Social Capacity Building for 8. Sustainable Urban Transformation
- Participatory Planning and Governance 9.
- Social Justice and Social Cohesion 10.
- Health and Wellbeing 11.
- New Economic Opportunities and Green Jobs 12.

Availability and equitable distribution of blue-green space		Social Justice and Social Cohesion		height etc.) can be obtained from municipality records for each spatial/administrative unit. Step 2: Using GIS, overlay the spatial units with available	
Description and justification	It is widely accepted that improves the quality of I social cohesion, democra physical and psychologic green spaces also contril urban neighbourhoods b encouraging tourism (Ib studies have highlighted space in cities around th metropolitan areas can r green space access and	t access to urban green space ife for urban residents, facilitating acy, and equity whilst enhancing cal health and well-being. Urban bute to the economic vitality of y increasing property values and es, 2015). A number of recent inequitable access to green e world. Spatial analysis of reveal the relationship between socio-economic status.	urban landscape data. For example, Cohen et al. (2012) obtained high resolution urban landscape data (1 m) from the Paris Urban Planning Agency that described the spatial distribution of: vegetation patches per strata (i.e., <1 m, 1–10 m, >10 m); (2) water bodies, bare soil and asphalt; and, built up areas based on the median height of buildings and the period of construction. This layer was intersected with the census block group data to view distribution patterns of urban landscapes. Step 3: Statistically analyse spatially-explicit data to evaluate green space availability (and green space type and size and/or biodiversity value, if desired) as a function of socio-economic factors in order to determine equity of green space distribution). A number of different statistical methods may be employed to evaluate the		
Definition	The availability and distribution of blue-green space with respect to specific individual or household socioeconomic profiles and landscape design			equity of public green space distribution. For example, Cohen et al. (2012) used available botanical information for each of the census block groups, calculating the mean household income per botanical and landscape class	
Strengths and weaknesses	+ Provides useful data for - Needs expert users and	or urban city planning d a lot of input data		cluster. They also assessed the correlation between mean revenue, floral richness, the ecological diversity index and building density.	
Measurement procedure and tool	The overall methodology involves selecting relevant characteristics and datasets, then overlaying these dataset using a geographic information system (GIS). Statistical analyses of spatially-explicit variables are then used to explore the relationship between urban green space availability and selected socio-economic		Scale of measurement	Metropolitan scale	
			Data source		
			Required data	Spatial/administrative data regarding population density, demographics, median household income, level of ownership, etc. Also urban landscape data with green spaces and green space characteristics.	
	characteristics. Additional factors, such as size or type of	Data input type	Qualitative and quantitative		
	green space, biodiversity value, etc. can also be evaluated. Steps of the process are given below:		Data collection frequency	Before and after NBS implementation	
	Step 1: Separate the metropolitan area of interest into its respective spatial/administrative units which provide clearly defined areas with readily available data regarding population density, demographics, median household	Level of expertise required	Moderate to high		
		Synergies with other indicators	Synergies with Distribution of public green space and Accessibility of urban green spaces		
	income, level of home of	nership, etc. Additional	Connection with SDGs	SDG 15 Life on land	
	family and multi-family residences, buildings for retail or commercial/industrial use, mean or maximum building		Opportunities for participatory data collection	No opportunities identified	

Principles that guide indicator selection

Please click on the link provided in the chat!

Rank each of the following considerations for NBS impact indicator selection from 1 (least important) to 5 (most important):

- Methods are scientifically sound an appropriate methodology is selected that is capable of assessing the indicator
- Selected indicators are practical and straight-forward indicators are aligned to the scope of expected impacts, specific site(s) or target group(s), and the plan for data collection is both reliable and feasible
- Reference conditions are established and baseline assessment undertaken to ensure a clear link between the challenges addressed and the indicators monitored
- Indicators align with policy principles and reporting obligations
- Evaluation of NBS, and indicator selection, is based on a transdisciplinary approach, combining knowledge from societal actors with knowledge and methods from different disciplines
- Indicators provide information on both positive and negative outcomes potential benefits and trade-offs are equally evaluated

Assessment to Establish Common Understanding

- Addressing major societal challenges requires collaboration among all members of society
- Participatory processes throughout the NbS lifecycle help to build both community and ecosystem resilience and sustainability
- Collaborative, inclusive processes underpinning NBS actions build trust and commitment
 - Increase knowledge & understanding
 - Catalyse enduring networks
 - Enhance social briging & bonding, sense of place
 - Novel procurement practices & certification schemes
 - New decision-making & financing approaches

Image source: Laikari et al. 2021. <u>NBS Demonstration Site Start-Up Report</u> (UNaLab D5.4).

Acknowledgements

Opportunities to stay informed – NetworkNature, NatureWithCities, UrbanbyNature Programme

Gathers resources, projects, best practices and tools in one place to support the nature-based solutions community

<u>networknature.eu</u>

Consolidate, support and expand a community of practice

Upscale the use of NbS across science, business, policy and practice

Raise awareness

= Maximise impact and spread of NbS

UrbanByNature Programme

Knowledge-Sharing and Capacity-Building on Naturebased Solutions

- Facilitated capacity-building and expertise-sharing
 programme
- only programme worldwide for local governments adopting a step-by-step plan for nature-based solutions in cities, aligned with an integrated planning process (ISO 37101)
- flexible and adaptable to questions and expertise of participants

1000+ registrants from +100 countries including **local governments** from all over the world

+70 published videos

hosted by and backed up by CitiesWithNature with its 215+ signatory cities (officially recognised city registry by SCBD)

www.urbanbynature.eu

CitiesWithNature: Connecting cities with research/policy/community and peers

ever before.

Nature Pathway

NATIONAL PARK CITY FOUNDATION Access to partners & their tools and resources

MORE INFO

Stay in the loop Keep up to date with the latest new our solutions are in nature

Monthly newsletter that profiles work of cities, news and events.

olitan Area of Barcelo

AMB stands in a privileged biogeographic position. The concentration of such an array of natural assets - from the Collserola Natural Park, to the Llobregat River Delta or our network of green infrastructures- in such proximity with a dense population offers exciting opportunities for innovative solutions to tackle metropolitan challenges in

/ice Preside

Sharing City profiles and advocating/promoting urban nature in cities as best practices

Action Platform – SCBD endorsed!

Newly launched RegionsWithNature: Website coming soon!