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Large-Area Characterization of Urban
Morphology—Mapping of Built-Up Height and
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Abstract—In this paper, we establish a novel multistep proce-
dure for morphologic characterization of built environments in
terms of built-up height and density. We rely on elevation mea-
surements from the TanDEM-X mission (TDM) and multispectral
Sentinel-2 imagery. These earth observation systems feature a no-
table tradeoff between a fairly high spatial resolution and large-
area coverage and, thus, allow for spatially continuous analysis of
built environments around the globe. To this purpose, we follow
an automated workflow that foresees the distinction of “built-up”
and “non-built-up” areas by relying on the so-called Global Urban
Footprint processor. This information is deployed within a tailored
filtering procedure for the TDM digital surface model data to ex-
tract elevation information for built-up areas. Subsequently, the
intra-urban land cover is mapped under consideration of Sentinel-
2 imagery and serves as basis to compute built-up heights and den-
sities. These two measures are finally combined for a morphologic
characterization of the built environment on an ordinal scale of
measurement. Empirical validation efforts are provided based on
comparative analysis with respect to more than 3.2 million individ-
ual building geometries and affiliated height measurements from
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cadastral data sources. The datasets cover the settlement areas of
the capital cities and other major cities in Germany, England, and
the Netherlands. The experimental results underline the capabil-
ity for a morphologic characterization of built environments with
viable accuracies.

Index Terms—Built-up density estimation, built-up height esti-
mation, Sentinel-2, TanDEM-X, urban morphology.

I. INTRODUCTION

CHARACTERIZATION of built environments for large ar-
eas is a challenging but crucial task for, e.g., monitoring

change in the context of urbanization [1], [2], identifying specific
settlement types [3], [4], analyzing population in a spatiotem-
poral manner [5], [6], evaluating the energy performance of dif-
ferent types of urban form [7]–[11], assessing vulnerability and
risks with respect to natural hazards [12], [13], and quantifying
urban heat islands [14], [15], among others.

To address the aforementioned applications, earth observa-
tion (EO; a table with all abbreviations used in this paper can
be found in the Appendix) data were already identified as a
valuable source of information. Regarding the spatial resolu-
tion properties, past studies frequently relied on digital surface
models (DSMs) (from, e.g., LiDAR measurements) and opti-
cal imagery (from, e.g., WorldView, GeoEye, etc.) with a very
high spatial resolution (VHR) to resolve and analyze the com-
parable small objects of built environments such as buildings
(e.g., [16]–[18]). However, the deployment of VHR data ham-
pers utilization capabilities due to availability, economic costs,
as well as processing requirements for large areas. When aim-
ing at spatially continuous analyses and assessment approaches,
which are applicable for large areas such as nations, continents,
or even the globe, those kinds of data still represent a clear lim-
itation nowadays.

However, especially recent EO systems internalize a remark-
able tradeoff between a fairly high spatial resolution and large-
area coverage. In particular, the TanDEM-X mission (TDM),
which is a spaceborne radar interferometer, delivers a global
DSM with an unprecedented pixel spacing of 0.4 arcseconds
(∼12 m) [19], [20]. Regarding optical imagery, ESA’s Sentinel-2
satellites [21] deliver imagery with a spatial resolution of 10 m
for the bands covering visible light and near infrared. Sentinel-2
data are provided free of charge to the public via a data hub.
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Given those properties, here, we complementarily employ data
from both systems for large-area characterization of built envi-
ronments.

Regarding thematic resolution properties, past studies pri-
marily characterized built environments with respect to building
types [22]–[27], or urban structure types (i.e., distinctive and
homogeneous assemblages of land cover/land use elements)
[28], [29] with a high level of semantic detail based on sufficient
and properly encoded prior knowledge. This allows inferring
empirical relationships for predefined and specific semantic
levels using supervised learning techniques (e.g., discrimi-
nate between buildings/zones of residential, commercial, and
industrial usage).

In contrast to those approaches, we aim to quantitatively char-
acterize built environments without the incorporation of prior
knowledge and a priori determination of thematic classes ac-
cording to specific semantics. This is done to allow for con-
sistent and automated large-area analysis. Additionally, in this
way, we bypass local idiosyncrasies (e.g., different settlements
may contain different building types and similar types might
feature a different physical appearance in various settlements,
which is shaped by natural and cultural factors). With it, we
aim for a consistent and objective statistical description of
settlements. Thus, such a quantitative characterization can be
transferred into thematic classes a posteriori and allows also
for a targeted collection of in situ knowledge for dedicated
applications.

Recently, Heinzel and Kemper [16] established an unsuper-
vised workflow based on VHR airborne multispectral imagery
for a joint description of settlements according to maximum
building size, heterogeneity of the building size, and built-up
density. To this purpose, they use operations from mathemat-
ical morphology [30] on the imagery. Based on spaceborne
multispectral imagery, Zhang et al. [31] estimate building den-
sity in a supervised manner using advanced regression tech-
niques. Gonzáles-Aguilera et al. [17] deploy VHR LiDAR data
for derivation of geometric information (heights, areas, and
volumes) and urban density attributes (building coverage ra-
tio and floor area ratio) of buildings, land lots, and urban units.
More thematically guided, Taubenböck et al. [18] produce three-
dimensional building models in level of detail 1 (LoD-1) resolu-
tion (i.e., buildings are represented by extruded footprints) [32]
by using a combination of VHR optical imagery and auxiliary
data sources (such as geo-tagged ground photos or in situ sur-
veys). Based on this data they characterize spatial patterns of
buildings in terms of density, orientation, and heterogeneity of
alignment and compute individual building size and height for
analysis of so-called “Arrival Cities.”

However, as mentioned before and in contrast to previ-
ous works, we jointly exploit DSM data from the TDM and
Sentinel-2 multispectral imagery to characterize urban mor-
phology. These data sets feature a global coverage and allow for
a unique mapping of urban morphology for large areas. At the
same time, the spatial resolution properties of the data hamper
analyses on individual building level. The pixel spacing of 0.4
arcseconds for the TDM data and 10 m for the multispectral

Sentinel-2 imagery can exceed the extent of the objects of
interest (i.e., buildings). As a consequence, we work on an
aggregated spatial level, i.e., we establish spatial processing
units in terms of rectangular grid cells to compute morphologic
properties of built-up structures. Thereby, we focus our work on
the most constituent properties of urban morphology, namely,
built-up height and density. The latter represents one of the
most important descriptive, explanatory, as well as normative
measures in urban research [33], [34]. In addition to that, the
presence of buildings adds a third dimension to be considered
among the environmental relationships found in urban areas.
Thus, the vertical dimension of built environments must be taken
into account to enable a holistic assessment [35]. Consequently,
the measure built-up height is also incorporated in our approach.
These two measures describing urban morphology are also in
line with and can support generic mapping schemes such as the
local climate zone (LCZ) concept [36], which aims to classify
natural and urban landscapes into categories based on climate-
relevant surface properties. Thus, built-up height and density
are determinant properties for categorizing urban landscapes
[37], [38].

To address the aforementioned considerations, we establish
a workflow to estimate built-up height and density for spa-
tial processing units. These two measures are finally combined
for a morphologic characterization of the built environment
on an ordinal scale of measurement, which represents combi-
nations of low, medium, and high built-up heights and den-
sities. We built upon our initial works regarding this subject
[39]. However, the contributions of this paper can be considered
as follows.

1) A novel workflow is proposed to estimate built-up height
and density automatically and derive corresponding ordinally
scaled classes with respect to spatial processing units thereof.
In particular, we first build upon the so-called Global Urban
Footprint (GUF) processor [40]. This procedure provides bi-
nary information on “built-up” and “non-built-up” areas on a
global scale. It is deployed within a filtering procedure on the
TDM DSM data to extract the required elevation information
solely within built-up areas. Thereby, intra-urban water bodies
are also automatically excluded. Subsequently, intra-urban land
cover (LC) (i.e., LC within “built-up” areas as indicated by the
GUF data set) is consecutively mapped according to the the-
matic classes “intra-urban vegetation”, “elevated built-up”, and
“residual intra-urban LC.” This information serves as basis to
compute built-up heights and densities.

2) Exhaustive validation efforts are carried out in an original
manner. We compute relevant accuracy measures based on com-
parisons with LoD-1 building models from areas which cover
ten large cities in three countries in Europe (i.e., Berlin, Ham-
burg, Munich, Cologne, Frankfurt, Stuttgart, London, Amster-
dam, Rotterdam, and The Hague). As such, the main objective
of this study is to evaluate the performance and overall suitabil-
ity of automatic computations of built-up heights and densities
from TDM and Sentinel-2 data for an efficient spatial differen-
tiation of entire metropolitan regions into areas of low, medium,
and high built-up height and density.

Authorized licensed use limited to: Deutsches Zentrum fuer Luft- und Raumfahrt. Downloaded on May 11,2022 at 16:01:45 UTC from IEEE Xplore.  Restrictions apply. 



2914 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 8, AUGUST 2019

Fig. 1. Flowchart of the approach for characterization of urban morphology in terms of built-up height and density.

The remainder of the paper is organized as follows. Section II
gives an overview of developed methods and Section III is used
to present the deployed data sets and explain the experimen-
tal setup. Section IV provides experimental results and valida-
tion efforts. Concluding remarks and an outlook are given in
Section V.

II. PROPOSED METHODOLOGY

A flowchart of the approach is given in Fig. 1. It builds upon
data from the TDM and Sentinel-2 and consists of three main
consecutive data processing modules. The first module builds
upon the GUF processor, which is used to discriminate “built-
up” and “non-built-up” areas in a binary manner (Section II-A).
The second module extends this binary description in terms
of elevation information. To this purpose, elevation infor-
mation in built environments is retrieved automatically us-
ing the DSM which was derived globally from the TDM
(Section II-B). The third module contains the calculation of
built-up height and density, which subsequently constitutes
the generic morphologic characterization of built environments
(Section II-C).

A. Global Urban Footprint

To efficiently constrain data processing and analysis on built
environments, we build upon the outcomes of a fully automated
image analysis procedure, which discriminates “built-up” and
“non-built-up” LC. Based on the TDM, which collected data
sets of high resolution synthetic aperture radar (SAR) images,
built-up areas can be extracted with an unprecedented spatial
detail on a global scale. This is due to the circumstance that
built-up areas show a distinct small-scale heterogeneity of local

backscatter in the imagery. As such, the image analysis pro-
cedure foresees the computation of the speckle divergence as
texture measure which is defined as the ratio between the local
standard deviation and local mean of the backscatter computed
in a defined local neighborhood. The speckle divergence will
take very high values over built-up areas due to the occurrence
of bright backscatter (as induced by, e.g., double bounce effects
and direct reflections at buildings) in close spatial proximity to
dark areas (as induced by e.g., shadows or specular reflections
at smooth surfaces such as roads). Subsequently, the speckle
divergence is jointly deployed with the original backscattering
amplitude for classification of built-up areas. To this purpose,
the classification procedure first implements thresholds derived
from image statistics of the amplitude and texture data, respec-
tively, to reliably identify image elements (i.e., pixels) of built-up
areas. The identified image elements serve as labeled samples for
learning one-class classification models based on Support Vec-
tor Domain Description to establish optimal model solutions for
the individual image scenes [40].

Generally, the data set does not contain spatially and the-
matically exact measurements of individual urban objects, but
provides a more abstract delineation of the physical man-
made properties of cities (i.e., built-up areas). Finally, post-
editing procedures ensure an overall absolute accuracy of about
85% [40], which underlines a reliable identification of built-up
areas [41].

B. Urban Footprint—Elevation

In combination with the GUF data set, the elevation mea-
surements of the TDM are used to compute a normalized DSM
(nDSM). Consequently, the latter comprises elevation informa-
tion of objects above ground in built-up areas. To this purpose, a
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digital terrain model (DTM) is derived first from the DSM with a
so-called region growing-based progressive morphological filter
procedure. This approach was first proposed by Geiß et al. [42]
to address general challenges associated with the use of mor-
phological filters in non-flat terrain and is intended to overcome
particular challenges related to the spatial resolution of TDM
data.

A detailed description of the underlying algorithms with pseu-
docode is provided in [42]. The procedure includes a multistep
method using concepts of morphological image filtering, region
growing, and interpolation techniques. It is based on the idea
of progressive morphological filters, which aim to discriminate
ground and nonground pixels in the DSM based on algebraic set
operations. Such filters identify nonground pixels in the DSM
by gradually increasing the size of a structuring element and
applying iteratively an elevation difference threshold. After the
identification of initial nonground pixels, here, potential non-
ground pixels are identified within each iteration and their simi-
larity with respect to neighboring nonground pixels is assessed.
Potential nonground pixels are finally labeled as nonground if
they feature a high similarity to already identified nonground
pixels. Thus, it is also made sure that intra-urban water bodies
are excluded from the analysis using the TDM water indication
mask, which is an automatically processed information layer
included in the TDM DSM product [43].

After complete identification of nonground pixels, corre-
sponding ground pixels are subsequently interpolated to a DTM
using an exact interpolation technique. Finally, the DTM is sub-
tracted from the DSM to receive the final nDSM in built envi-
ronments [i.e., Urban Footprint – Elevation (UF-E)].

C. Morphologic Characterization

The calculation of built-up height and density is based on an
intra-urban LC map. To establish the LC map, the UF-E data
set is combined with Sentinel-2 imagery. The latter serves for
computing the Normalized Difference Vegetation Index (NDVI)
[44]. The NDVI internalizes different reflection properties of
vegetation in the red and NIR band, respectively. High numerical
values indicate photosynthetically active vegetation. In this man-
ner, it can be noted that the GUF algorithm relies on distinctive
SAR-related backscatter mechanisms of vertical, unpenetrate-
able structures (i.e., built-up structures), and thus, the data set
does not contain larger fractions of vegetation (e.g., urban forests
[45]) [46]. However, small vegetation patches are automatically
excluded before further processing by adaptively thresholding
NDVI values of Sentinel-2 imagery using Otsu’s method. The
method searches for a threshold to separate two classes with
minimum intra-class variance, i.e., maximum inter-class vari-
ance [47]. In this method, the group with higher NDVI values
corresponds to intra-urban vegetation, whereas the group with
lower NDVI values contains the remaining LC classes. Subse-
quently, elevated built-up areas are discriminated from residual
intra-urban LC. This is done to prune intra-urban LC which
cannot represent the objects of interest (i.e., buildings). Thus,
we assume that pixels within the residual settlement area (i.e.,
built-up areas without intra-urban vegetation as identified in the

previous processing step) represent elevated built-up areas if
they exceed a certain height threshold Θ in the associated UF-E
model.

The actual calculation of built-up height and density as well
as their joint representation for final morphologic characteriza-
tion is provided on spatial processing units. This is done to allow
for a robust representation of extracted height values based on a
statistical measure of central tendency (i.e., a quantile Qn) and
computing densities from the binary elevated built-up area pix-
els. In addition, in this way, robust comparisons to reference data
with different resolution properties can be achieved. Here, rect-
angular grid cells of size a× a, based on the arrangement of the
image elements of the Sentinel-2 data, are used to rely on compa-
rable spatial entities which are ubiquitously available through-
out built environments (alternatively, irregular spatial processing
units such as superpixels from an image segmentation procedure
[29] or street blocks generated from geospatial vector data [25]
can be exploited). Consequently, built-up height and density per
grid cell are calculated as follows:

built-up heightgrid cell = Qn (nDSMelevatedbuilt-up) (1)

where Qn is the aggregation function (i.e., statistical measure of
central tendency) and nDSMelevatedbuilt-up are the numerical
height values contained in the UF-E model for the pixels labeled
as LC class “elevated built-up”

built-up densitygrid cell =
Aelevatedbuilt-up

Abuilt-up
(2)

where Aelevatedbuilt-up is the area covered by pixels labeled as
LC class “elevated built-up” and Abuilt-up is the area covered
by pixels labeled as “built-up” (i.e., GUF).

Finally, estimated built-up height and built-up density values
per grid cell are joined to nine morphologic classes, which rep-
resent combinations of low, medium, and high built-up heights
and densities.

III. DATA SETS AND EXPERIMENTAL SETUP

A. DSM Data From TanDEM-X

As mentioned earlier, the TDM elevation model can be dom-
inantly regarded as a DSM, especially when analyzing built en-
vironments as in this study. Only few surfaces such as ice, snow,
or vegetation can be penetrated by the X-band SAR signal [48].
Comparisons to ICESat data underline the high quality of eleva-
tion measurements, which feature less than one meter deviation
in absolute vertical accuracy for surfaces other than highly vege-
tated areas or snow-/ice-covered regions. [49]. Overall, 14 TDM
tiles (1° by 1°) with a spatial resolution of 0.4 arcseconds (i.e.,
∼12 m) were processed to consistently cover the settlement ar-
eas of all ten considered cities.

B. Multispectral Imagery From Sentinel-2

The multispectral Sentinel-2 imagery were subject to atmo-
spheric corrections within the Sentinel Application Platform
[50] using the Sen2Cor module [51] to provide level 2A prod-
ucts. We deploy Sentinel-2’s red (665 nm) and nir (842 nm)
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Fig. 2. LoD-1 model for a subset of the city of Berlin.

bands, which feature a spatial resolution of 10 m, for com-
putation of NDVI values. The imagery for the different cities
was acquired in autumn and winter of the years 2014–2016.
The dates were chosen to reduce the effect of vegetation on the
intra-urban LC classification since intra-urban vegetation fre-
quently obscures underlying built-up structures [52].

C. Reference Data

As reference data sets, we incorporated LoD-1 building mod-
els comprising more than 3.2 million building geometries and
affiliated height measurements, which are based on cadastral
information for the cities in Germany [53] and the Nether-
lands [54], as well as edited OpenStreetMap data for the city
of London [4]. Fig. 2 illustrates the reference LoD-1 mod-
els for a subset of the city of Berlin (the subset corresponds
also to the area which is shown in the zoom-in windows of
Fig. 4). The building geometries were resampled and properly
aligned to the image elements of the Sentinel-2 data for com-
parison. The resulting binary built-up mask was used for com-
putation of built-up height and density per grid cell, whereas
median height values (i.e., Q50) were deployed for subsequent
comparisons.

D. Experimental Setup and Parameterization

The filter procedure for normalization of the DSM needs some
free parameters to be fixed. The structuring element of the mor-
phological filter must always exceed a building’s outline to en-
sure extraction of all buildings present in the area under investi-
gation. Consequently, the side length of the structuring element
was determined empirically for the study areas according to the
largest buildings present in the data. Additionally, an elevation
difference threshold and a similarity constraint need to be de-
termined. Both were set in accordance to previous experimen-
tal analysis, to enable a favorable tradeoff between decrease of
omission errors and increase of commission errors when clas-
sifying ground pixels (i.e., 2.6 m for the elevation difference
threshold and 1 m for the similarity constraint [42]). Besides,
we derived a binary water mask with maximum extent from
the water indication mask, which is provided with the TDM
data, by selecting values from 3 to 127 (i.e., thresholds of TDM
amplitude and coherence) [43]. Inverse distance weighting [55]
with an adaptive neighborhood was deployed for interpolation

of identified ground pixels. The deployed GUF data sets feature
a spatial resolution of 12 m. The obtained scene-specific NDVI
thresholds, as determined with Otsu’s method, are quite restric-
tive in classifying vegetation and range from 0.35 (Munich) to
0.46 (Cologne). We evaluated results as a function of different
height thresholds for establishing the intra-urban LC map, i.e.,
Θ = {>0m, 3 m, 5 m}. In addition, we tested different aggre-
gation functions for estimation of built-up height per grid cell.
As described before, we represent height values of grid cells
by quantiles Qn. For a systematic evaluation, different deciles
are tested, i.e., Q50, Q70, Q90. Previous experiments showed
that built-up heights are in tendency underestimated [39]. This
motivated us to also establish built-up height estimations using
upper deciles in addition to the median to eventually balance
likely underestimations. Regarding the edge length of grid cells,
we evaluate results with respect to a = {200 m, 500 m, 800 m}.
Those values were found empirically to allow reflecting areas of
homogeneous urban morphology in previous studies (e.g., [4],
[34]). As described earlier, the measurements are finally com-
bined within the defined nine morphologic classes. The thresh-
olds for low, medium, and high built-up heights and densities
were set according to numeric values, which are consistent with
the values provided by the LCZ concept [36], i.e., a thresh-
old of 0.2 for low built-up densities and 0.4 for high built-up
densities was chosen, in conjunction with a threshold of 10 m
for low built-up heights and 25 m for high built-up heights, re-
spectively.

Statistical evaluation is carried out based on a set of accuracy
measures. The accuracy of built-up height and density estimates
is evaluated based on mean error (ME)

ME =
1

N

N∑

i=1

(
X̂i −Xi

)
(3)

where X̂i is the numerical value per grid cell computed from
the intra-urban LC map X̂ , Xi is the numerical value per grid
cell derived from the reference data X , and N is the number of
grid cells. Thus, positive ME values (i.e., ME > 0) indicate an
overestimation, whereas negative ME values (i.e., ME< 0) indi-
cate an underestimation of built-up height and density estimates
with respect to the reference. In addition, the mean absolute er-
ror (MAE) is computed analogously [56] to provide absolute
deviation levels

MAE =
1

N

N∑

i=1

(|X̂i −Xi|). (4)

Regarding the final combination of computed built-up height
and density within nine morphologic classes, we derived classi-
fication accuracy measures from a weighted confusion matrix to
account for the ordinal scale of measurement, which prohibits
the valid use of accuracy measures derived from a conventional
confusion matrix [57]. Consequently, a deviation of one ordinal
class (e.g., class “low density – low height” is confused with “low
density – medium height”) is solely penalized with a weighting
factor of 0.25, two classes are penalized with a factor of 0.5,
three classes are penalized with a factor of 0.75, and higher de-
viations are fully penalized. For illustration, Fig. 3 shows the
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Fig. 3. Confusion matrix and weighting scheme with respect to the nine ordinal
morphologic classes for computing a weighted confusion matrix.

weighting scheme for the number of instances n of the respec-
tive morphologic classes.

This scheme is multiplied with the unweighted confusion ma-
trix, whereby the residual instances, i.e., ((1− λ) ∗ n) are added
to the correctly classified instances of the respective class located
at the diagonal of the matrix. To evaluate class-specific differ-
ences in accuracy, we derived user’s and producer’s accuracies
from the weighted confusion matrix. In addition, the overall ac-
curacy (OA) as well as κ statistics [58] were computed as global
accuracy measures.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

An exemplary visualization of the outcomes of the different
data processing steps in terms of TDM DSM data with binary
water mask, atmospherically corrected Sentinel-2 data, GUF,
and UF-E for the city of Berlin, Germany, is provided in Fig. 4.
In addition, the intra-urban LC map is also shown, which serves

as a basis to compute built-up height and density. The zoom-
in window already allows inferring some fundamental proper-
ties of the respective data sets. The TDM DSM resolution of
∼12 m does not consistently allow reconstructing the individ-
ual building footprints. However, the built-up structures can be
clearly depicted in the grayscale image representation of the
DSM [see Fig. 4(a)]. To extract complementary information,
multispectral Sentinel-2 imagery offers a suitable tradeoff be-
tween covering large areas and simultaneously capturing de-
tails of the built environment [see Fig. 4(b)]. The GUF data set
accurately identifies “built-up” LC, whereby larger vegetation
areas or bare soil patches between built-up areas are also cor-
rectly labeled as “non-built-up” [see Fig. 4(c)]. The intra-urban
nDSM (i.e., UF-E) extends the thematic resolution of the GUF
data sets by assigning a rational scaled elevation value, which
also clearly allows identifying elevated objects of built environ-
ments [see Fig. 4(d)]. To further refine the spatial distinction
of “built-up” and “non-built-up”, intra-urban vegetation areas
are labeled under consideration of the multispectral imagery
[see Fig. 4(e)]. Subsequent to that, the UF-E model is used
to further distinguish between “elevated built-up” and “resid-
ual intra-urban LC” in the remaining areas (Θ was set to 3 m
in this visualization, which corresponds approximately to one
floor [59]). Only pixels of the class “elevated built-up” and af-
filiated elevation values from the UF-E model are used for map-
ping built-up heights and densities and creating the morphologic
classes.

A. Accuracy of Built-Up Height

Accuracy of built-up height estimations differentiated with
respect to the nine morphologic classes is provided in Fig. 5.
The morphologic classes were created based on the reference
data sets of all ten considered cities. Results are presented as
a function of different values for the height threshold Θ, the
aggregation function for estimation of built-up height per grid
cell, and the size of the grid cells.

The ME reveals a systematic underestimation of built-up
height estimations in relation to the reference data for all mor-
phologic classes [see Fig. 5(a)]. Only some estimates based
on restrictive values for Θ (i.e., Θ = {>3 m, 5 m}) provide
overestimations predominately for morphologic classes with low
built-up density. The MAE [see Fig. 5(b)] uncovers increasing
height deviations with an increasing built-up height. This can
be naturally related to the increasing range of numerical height
values. In addition, areas which show a high built-up height in
conjunction with a low built-up density are prone to layover and
shadow effects, which prohibit capturing valid elevation mea-
surements. However, height estimations feature lower error lev-
els with an increasing built-up density. Generally, error levels can
be balanced by choosing an appropriate aggregation function.
Thus, the most progressive value considered in this study (i.e.,
Q90) consistently provides most favorable error levels, which
underline systematically low elevation values in the underlying
TDM data in relation to the ground truth information. This re-
lation also explains favorable error levels induced by restrictive
Θ values. Thus, only built-up areas are considered for height
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Fig. 4. Overview on the different data sets for the city of Berlin, Germany. (a) TDM DSM data with binary water mask. (b) Atmospherically corrected Sentinel-2
multispectral imagery in false-color representation. (c) GUF data set which discriminates “built-up” areas from “non-built-up” areas. (d) The UF-E model provides
intra-urban elevation values. (e) Intra-urban LC map which discriminates three thematic classes.
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Fig. 5. Error measures for built-up height estimations. (a) ME and (b) MAE differentiated according to the nine morphologic classes and different values for the
height threshold Θ, the aggregation function for estimation of built-up height per grid cell, and the size of the grid cells.

Fig. 6. Visualized built-up heights according to a = 200 m (Θ = 3 m and height is represented by Q90 with respect to the estimation) for the example of Berlin,
Germany. Color coding corresponds to deciles for the individual data sets and thus allows a relative spatial comparison; however, heights of bars correspond to
absolute numerical values where numerical height values were superelevated 50 times.

estimation, which already exceed certain elevation values and,
thus, provide progressive built-up height estimations. Overall,
error levels based on favorable combinations of hyperparame-
ters feature a deviation of less than one floor for built-up areas
with low heights, one to two floors for medium high built-up

areas, and approximately two floors for high built-up areas if
built-up structures are not overly sparse, which underline the vi-
ability of the approach. Finally, it can be noted that errors levels
frequently decrease slightly with an increasing size of the grid
cells, which can be related to averaging effects.
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Fig. 7. Error measures for built-up density estimations. (a) ME and (b) MAE differentiated according to the nine morphologic classes and different values for
the height threshold Θ and the size of the grid cells.

Fig. 8. Visualized built-up densities according to a = 200 m (Θ = 3 m with respect to the estimation) for the example of Berlin, Germany. Color coding
corresponds to deciles for the individual data sets and thus allows a relative spatial comparison; however, heights of bars correspond to absolute numerical values
where numerical density values were superelevated 1000 times.

To illustrate further, Fig. 6 provides a visual comparison of
estimated built-up heights and built-up heights derived from the
building geometries of the LoD-1 model for the city of Berlin,
Germany. In concordance with the previous results, it can be
noted that estimated built-up heights are in tendency underes-
timated. However, the relative spatial pattern reflects the distri-
bution of built-up heights with respect to the reference data set
well. For instance, the urban core with high built-up heights is

equally well depicted as low built-up heights on the peripheral
areas of the city.

B. Accuracy of Built-Up Density

Accuracy of built-up density estimations differentiated ac-
cording to the nine morphologic classes is provided in Fig. 7.
Analogous to previous analysis, they are based on the reference
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data sets of all ten considered cities. Results are presented as a
function of different values for height threshold Θ and size of
the grid cells.

ME values [see Fig. 7(a)] show varying under- and over-
estimations with respect to the morphologic classes. Overes-
timations can be observed predominantly for areas which are
characterized by high built-up heights. Those built-up structures
can be primarily found in the central areas of the considered
cities (i.e., the urban cores). Here, the estimations reveal an al-
most complete coverage by built-up structures while the refer-
ence data depict significant lower built-up densities. In contrast
to that, underestimations can be noted mainly for areas which
feature low built-up heights. Those built-up structures can be
frequently found in the fringe of the agglomerations (i.e., resi-
dential areas at peripheral or suburban areas of the cities). The es-
timations assign very low built-up densities to those areas while
the cadastral data, which is considered as ground truth infor-
mation here, reveal significantly higher built-up densities. This
relation can be dominantly attributed to the fact that intra-urban
vegetation obscures underlying built-up structures when corre-
sponding built-up heights are low. Comparable effects were also
previously described in studies which aim to estimate the per-
centage of impervious surfaces based on remote sensing imagery
(e.g., [52], [60]). Besides, for remaining morphologic classes,
overestimations for progressive Θ values and underestimations
for restrictive Θ values occur.

Regarding absolute error levels and in concordance with
previous results, the MAE [see Fig. 7(b)] reveals lowest values
for areas with medium built-up heights and largest values for
structures with high built-up heights and low built-up densities
(i.e., overestimations regarding the urban cores) as well as for
areas with low built-up heights and high built-up densities (i.e.,
underestimations regarding residential areas at peripheral and
suburban areas of the cities). Thus, also most favorable hyper-
parameters vary as a function of morphologic class: progressive
Θ values allow for reducing underestimations in areas with
low built-up height and high built-up density, while restrictive
Θ values enable balancing overestimations for structures with
high built-up height and low built-up density. However, for a
moderately restrictive Θ threshold (i.e., Θ = {>3 m}), viable
built-up density estimations with deviations less than 20% are
achieved for the majority of morphologic classes. An additional
10% deviation can be observed for the morphologic classes
comprising high built-up heights and low and medium built-up
densities as well as the class with low built-up heights and high
built-up densities. In this setting and analogous to the built-up
height estimations, errors levels frequently decrease slightly
with an increasing size of the grid cells, since larger grid sizes
are more likely to contain a mixture of structural types leveling
local variations of density throughout urban morphology.

To illustrate the previous findings, Fig. 8 provides a visual
comparison of estimated built-up densities and built-up densi-
ties derived from the building geometries of the LoD-1 model
for the city of Berlin, Germany. The density estimations show
an ideal decrease from the core to the fringe, whereby the LoD-1
model-based built-up densities also show highest densities in
the urban core but are generally more spatially differentiated and

fragmented and feature higher levels in vast parts of the fringe
areas.

C. Morphologic Characterization

The built-up height and density estimations are finally com-
bined within nine morphologic classes. Results for the capital
cities are depicted in Fig. 9 with affiliated classification accuracy
measures computed by comparing every single grid cell. Addi-
tionally, zoom-in windows for selected areas are shown. Results
for the remaining cities are visualized in Fig. 10 with affiliated
classification accuracy measures.

First, it can be noted that the overall morphologic structure
of the cities is well reflected: They are dominantly character-
ized by a single or multiple urban core(s) and affiliated high
built-up structures and lower built-up structures, which are also
less densely arranged, in the peripheral parts. This structure pri-
marily derives from a concentric, industrial city model with a
defined center surrounded by a more or less complex halo of
settlement structures with lower heights and densities and sub-
urbs which ultimately turn into rural environments [61]. Thus,
small-scale changes in the urban morphology are well reflected
as can be seen from the classification outcome which is su-
perimposed on the Sentinel-2 imagery in the zoom-in-windows
of Fig. 9.

Regarding the class-specific classification accuracy measures,
the user’s and producer’s accuracies reflect the findings from
the previous analysis. While certain morphologic classes fea-
ture consistently both high user’s and producer’s accuracies,
other morphologic classes mirror characteristic errors described
in the evaluation of estimated built-up heights and densities be-
fore. Large omission errors (i.e., low producer’s accuracies) can
be observed for the class characterizing low built-up heights and
high built-up densities with respect to the majority of cities (i.e.,
Berlin, London, Munich, Frankfurt, Stuttgart, and The Hague).
Here, the underestimation of built-up densities in fringe areas
prevents correct class assignments and corresponding areas are
primarily allocated to the class with low built-up height and
low built-up density. Likewise, large omission errors can be no-
ticed for majority of cities for the two classes characterizing
high built-up heights and low and medium built-up densities.
Here, the general underestimation of built-up heights causes in-
correct class assignments and corresponding areas are primarily
allocated to the classes with medium built-up heights. Besides,
some local sources of errors can be identified. As such, erroneous
class assignments are present in cities where built-up structures
in direct spatial vicinity to large water bodies exist (e.g., Amster-
dam and Rotterdam). Although water bodies were pruned from
further processing by inclusion of the TDM water mask (cf. Sec-
tion III-D), a number of pixels still carry disproportional high
height values in the UF-E model that lead to errors of commis-
sion for the class which describes high built-up heights and high
and medium built-up densities. Nevertheless, global classifica-
tion accuracy measures show OA values consistently exceeding
70% and κ statistics dominantly show substantial agreements
(i.e., κ statistic >0.6), which underlines the viability of the ap-
proach. As such, the produced data sets feature a great potential
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Fig. 9. Morphologic characterization for the capital cities (a) Berlin, (b) London, and (c) Amsterdam according to a = 200 m; semi-transparent detailed views
are superimposed on Sentinel-2 imagery. Ordinally weighted classification accuracy measures are also presented. Numbers in brackets below the producer’s
and user’s accuracy bars indicate the numbers of grid cells per morphologic class based on the reference data which were used for computation of accuracy
measures.
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Fig. 10. Morphologic characterization for the cities (a) Hamburg, (b) Munich, (c) Cologne, (d) Frankfurt, (e) Stuttgart, (f) Rotterdam, and (g) The Hague according
to a = 200 m. Ordinally weighted classification accuracy measures are also presented. Numbers in brackets below the producer’s and user’s accuracy bars indicate
the numbers of grid cells per morphologic class based on the reference data which were used for computation of accuracy measures.
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for novel applications and objective comparative analysis be-
tween cities regarding the morphologic structure based on data
with an unprecedented tradeoff between high spatial resolution
and large-area coverage.

V. CONCLUSION AND OUTLOOK

In this paper, we have proposed a novel workflow, which
builds upon data from the TDM and Sentinel-2 imagery to
characterize urban morphology for large areas in an automated
manner. To this purpose, we rely on the GUF processor, which
discriminates between “built-up” and “non-built-up” LC on a
global scale while maintaining a high spatial detail. This bi-
nary description of built-up LC is extended by computing el-
evation information (i.e., UF-E model) from the TDM using a
tailored filtering technique on the DSM. Derived information
layers serve as input for a hierarchical classification scheme for
intra-urban areas. The scheme foresees the delineation of intra-
urban vegetation under consideration of information from the
Sentinel-2 imagery. Subsequent to that, the UF-E model is used
to further distinguish between “elevated built-up” and “residual
intra-urban LC” in the remaining areas. Consequently, pixels of
the class “elevated built-up” and affiliated elevation values from
the UF-E model are used for mapping of built-up densities and
heights and for creating the joint classes, which describe urban
morphology.

Comparative evaluations with respect to cadastral data are ob-
tained for settlement areas covering ten major cities in Germany,
England, and the Netherlands. They uncover a systematic under-
estimation of built-up heights in relation to the reference data for
all morphologic classes. However, error levels can be balanced
by choosing appropriate hyperparameters of the approach. In
this manner, built-up height estimations feature deviations of
approximately one to two floors depending on the correspond-
ing morphologic class and the relative spatial pattern reflects the
distribution of built-up heights with respect to the reference data
set well. The built-up densities show highest accuracies for areas
with medium built-up heights. Lowest accuracies are obtained
for structures with high built-up heights and low built-up densi-
ties (i.e., overestimations regarding the intra-urban cores) as well
as for areas with low built-up heights and high built-up densities
(i.e., underestimations regarding peripheral or suburban areas
of the cities). Nevertheless, viable built-up density estimations
with deviations of less than 20% are achieved for the majority
of morphologic classes. In addition, the estimations reflect the
general urban morphologic structure well by showing an ideal
decrease from the core to the fringe of the agglomeration areas.
Finally, regarding the actual morphologic characterization, ordi-
nally weighted global classification accuracy measures show OA
values consistently exceeding 70% and κ statistics dominantly
show substantial agreements.

The TDM and Sentinel-2 data offer the unique opportunity to
assess urban morphology according to the proposed approach
around the globe. However, for scientific applications the ac-
cessibility of the TDM data is currently limited to 100 000 km²
per data proposal. To alleviate this limited accessibility, we aim

to develop an approach to substitute the TDM data. To this pur-
pose, we will render the estimation of built-up density and height
as a supervised learning problem [62]. In addition to that, we
aim for reprocessing the Co-registered Single-look Slant-range
Complex TDM data to establish a novel global DSM with en-
hanced geometric resolution properties using advanced signal
processing algorithms [63], [64]. In addition, future work can
also aim for refining accuracy of results by establishing empiri-
cally derived postprocessing models to align the estimations to
reference data. This appears as a viable option since we found
majority of deviations to be systematic (i.e., data inherent) and,
thus, allow to be corrected for.

Overall, the envisaged data sets have the potential to sub-
stantially support and enable a broad range of area-wide ap-
plications as discussed in the introduction section. Besides,
the TDM has been extended to generate an updated elevation
model [49]. With it, monitoring of urban expansion could be
extended from two-dimensional analysis [65] towards the quan-
tification of change of built-up volumes over time. For the very
first time, the extent of infill development and urban inten-
sification would become observable for larger urban areas or
even urban systems at national or supranational scales. Hence,
valuable contributions to different fields of research are in
prospect.
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