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• We evaluated 21 Regional Climate
Models (RCMs) to simulate future cli-
mate extremes in Asian cities.

• Different RCMs performed differently to
simulate future climate extremes.

• RCM WAS44_SMHI_RCA4_IPSL_CM5A
_MR performs the best in Bangkok city.

• RCMWAS44_SMHI_RCA4_MIROC5 per-
forms the best in Ho Chi Minh City.

• RCM WAS44_IITM_REGCM4-4_CSIRO_
MK3-6-0 performs the best in Kathmandu.
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This study evaluates the ability of 21 Regional Climate Models (RCMs) from the Coordinated Regional Climate
Downscaling Experiment (CORDEX) in simulating climate extremes in the fast growing Asian cities which are
highly vulnerable to climate change. The three Asian cities have two different climate characteristics, namely
Bangkok and its vicinity and Ho ChiMinh City in tropical climate region and Kathmandu in sub-tropical and tem-
perate climate region. The RCMswere evaluated to simulate the six climate indices; Consecutive Dry Days (CDD),
Simple Daily Intensity Index (SDII), Number of extremely heavy precipitation days (R50mm), Maximum 1-day
precipitation amount (RX1day), Mean of daily maximum temperature (TX mean) and Mean of daily minimum
temperature (TN mean). The performance indicators used were correlation coefficient, normalized root mean
square deviation, absolute normalized root mean square deviation and average absolute relative deviation. The
Entropy method was endorsed to acquire weights of these four indicators and weightage average techniques
were used for ranking of 21 RCMs. The result demonstrated that the best model for one climate index is not
the same best model for other climate indices. The 3 RCMs; WAS44_SMHI_RCA4_IPSL_CM5A_MR,
WAS44_SMHI_RCA4_MIROC5, and WAS44_IITM_REGCM4-4_CSIRO_MK3-6-0 are the best performing RCMs
for simulating future climate extremes in Bangkok and its vicinity, Ho Chi Minh city and Kathmandu valley, re-
spectively. Therefore, they are recommended to use for climate change impact and adaptation studies in water
resources management in the selected cities.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The increasing water demand due to rapid population growth, ur-
banization, and industrialization along with global warming in the
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past few decades are making water a precious, but not always available
asset (Beran et al., 2016; Gosling and Arnell, 2016). Climate change has
become a serious threat towater resources. Theworld climate is chang-
ing at full tilt in recent years (Vijaya et al., 2012). As reported by Inter-
governmental Panel on Climate Change (IPCC), the global temperature
has risen by 0.3-0.6 °C and will pick up to rise between 1.4 and 5.8 °C
by 2100 relative to 1900 (IPCC, 2013). Under these circumstances, the
hydrological cycle experience significant impacts with furthermore
change in precipitation and evaporation (Shrestha et al., 2020). The re-
lease of greenhouse gases like nitrous oxide, carbon dioxide and meth-
ane in the atmosphere by the virtue of several human exercise are the
main factor that influence on climate change andwill have impact in cli-
mate, such as changing the patterns and quantity of rainfall, and in-
creasing the global temperature (IPCC, 2013). Climate change results
in increase or decrease in the temperature and other climatic variable,
which will affect the hydrologic cycle of a watershed by altering evapo-
ration, precipitation, infiltration, recharge, etc.

Climatemodels arewidely relied upon to investigate the response of
the climate system to various forcing, formaking climate predictions on
seasonal to decadal time scales and for making projection of future cli-
mate over coming century and beyond (Flato et al., 2013). Future cli-
mate projections provided by general circulation models (GCMs) can
serve as the basic input for climate change impact studies on water re-
sources (Stefanidis et al., 2020). However, the coarser resolution of the
GCMs output prohibits it from providing a precise description of ex-
treme events with respect to the regional and local impact of climate
variability and change (Giorgi et al., 2009). In addition, they cannot pre-
cisely simulate regional scale phenomena due to local conditions and
peculiarities, such as the complex topography, lakes, and small islands
(Zanis et al., 2015). Hence, they have to be downscaled in most cases
to appropriate (higher) resolutions. Such a downscaling can be done ei-
ther through applying statistical downscaling or through dynamic
downscaling via use of Regional Climate models (RCMs) embedded in
a larger GCMs (Khan and Koch, 2018; Xue et al., 2014; Rummukainen,
2010). RCMs are higher resolution nested regional climate modelling
technique which consists of using initial condition, time dependent
lateral meteorological conditions and surface boundary conditions
derived from GCMs (Giorgi et al., 2001). To advance the distribution of
atmosphere and diverse climatic variable at higher resolution, RCMs
considered the land cover, topographical features within individual
grids of GCMs. The resolution of RCMs ranges from 10 to 50 km
(Mariotti et al., 2014). In addition, RCMs are useful for understanding
the local climate in region that has complex topography (Endris,
2013) and they account for land surface heterogeneity (Gbobaniyi,
2014).

Many researchers from around theworld have evaluated the climate
models for future climate change projection studies using several tech-
niques. Some of which are mentioned below: Raju and Kumar (2014)
considered 5 performance indicators (R, NMRSD, ANMRSD, AARD and
SS) to rank 11 GCMs for India for precipitation as a given climate vari-
able. They used Entropymethod to determine theweights of the indica-
tors and an outranking based Multi Criteria Decision Making (MCDM)
method, PROMETHEE-2. They found that the addition of more indica-
tors, more climate variable, different GCMs and change in indicator
weight changed the resulting ranking pattern. Fordham et al. (2011)
used an ensemble of 20 GCMs over Australia by applying the range of
skill and convergence metrics for precipitation according to their skill
in reproducing 20-year observed patterns of regional and global climate
of interest. They concluded that model ranking (match of simulate to
observed conditions) differs according to skill metric used, as well as
the climate variable and season considered. According to Perkins et al.
(2007), skill score approach was applied to evaluate 14 RCMs peculiar
to the ability of GCMs to resemble daily rainfall, daily minimum, and
maximum temperature for 12 regions of Australia. The assessment
was in regard to how properly individual GCMs could arrest the ob-
served probability density function for each individual variable and
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each region. Ojha et al. (2014) employed an ensemble of 17 GCMs and
ranked 10 variables by applying the Variable Convergence Score (VCS)
method for the case of India. A higher consistency was indicated for
pressure and temperature and lower consistency for precipitation and
related variable across GCMs. The overall result indicated low conver-
gence in atmospheric attributes for northeastern part of India. Accord-
ing to Wilcke and Barring (2016), clustering method was used to
reduce ensembles of climate simulation and select the suitable subsets
of climate models for impact modelling studies in Europe. This method
includes identifying user requirements (variables), transforming vari-
ables into orthogonal and therewith uncorrelated variables, calculating
the optimum number of clusters, using hierarchical clustering to group
the simulation, and selecting the simulation closest to the group's mean
as representative.

Regardless of the availability of large number of RCMs in CORDEX
archive, and the ongoing enhancements in their process representation,
issues of large uncertainties with regard to future climate are not
yet avoidable. The inherent uncertainties, along with other factor such
as time limitations, human resource availability, or computational
constraints make it imperative to sort out the most appropriate set of
RCMs for the assessment of climate change impacts in the region (Khan
and Koch, 2018). Therefore, the evaluation of RCMs is very necessary
prior to their use in impact assessment study (Anagnostopoulos et al.,
2010; Koutsoyiannis et al., 2007). The main objective of this study is
to evaluate the RCMs for simulating climate extreme in the Asian cities
namely Bangkok and its vicinity, Ho Chi Minh City, and Kathmandu val-
ley. The specific objectives are, (a) to evaluate the skills of climate
models in simulating the past climate using performance indicators,
(b) to reveal weightage of performance indicators using entropy
method and, (c) to select the best performing RCMs based on ranking
techniques. The main hypothesis of this research is that the climate
models with a higher ability in reproducing historical climate yield bet-
ter performance in the evaluation of future climate trend.

2. Data and methodology

2.1. Description of study area

The study area consists of fast growing three Asian cities; Bangkok,
Ho Chi Minh City, and Kathmandu Valley (Fig. 1). Bangkok and its vicin-
ity, Thailand, consist of 7 provinces: Bangkok, Nonthaburi, Pathum
Thani, Nakhon Pathom, Samut Sakhon, Samut Prakan and Phra Nakhon
Si Ayutthaya. The city and its surroundingprovince are located along the
bank of the Chao Phraya river, Noi river, Pasak river, Mae Klong river,
Prachin river and Tha Chin river. Bangkok lies in the humid tropics
and is hot throughout the year with a tropical wet-and-dry climate,
which is under the influence of the South Asian monsoon system. The
average temperature is 30 °C and average rainfall is 1500 mm/yr. The
total population of 11.3million and population density of 300-3600per-
sons/km2 is already recorded in the study area.

HoChiMinhCity (HCMC) is the largest city in Vietnam located in the
southeast region 1760 km south of Hanoi. The city covers an area of
2095 km2 and is home to over 7.95million people (in 2014), accounting
for approximately 0.6% of total area and 8.79% of the total population of
Vietnam. It is the most important economic center, contributing 20% of
the country's GDP. The average elevation of the entire city ranges from
0.5 to 1.0 masl. The climate is tropical, specifically tropical wet and
dry, with an average humidity of 75% and an average temperature of
27 °C. It receives an average annual rainfall of 1946 mm, of which
1130 mm is lost in evaporation.

Kathmandu, the capital city of Nepal located in central Nepal, cover-
ing almost 656 km2 is the largest metropolitan city in Nepal. According
to the 2011 census, it is the home of almost 2.5 million people with an
average population density of 29 person/km2 (including the urban
and rural area of Kathmandu valley). Kathmandu valley falls under
warm temperate zone have an elevation range of 1205 –2713 masl



Fig. 1. Study area map of Bangkok and its vicinity, Kathmandu valley showing meteorological stations and Ho Chi Minh city with APHRODITE (Asian Precipitation - Highly-Resolved Ob-
servational Data Integration Towards Evaluation) grid and CPCNOAA(Climate Prediction Center- National Oceanic andAtmospheric Administration) temperature grid andmeteorological
stations, respectively.
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with significance difference in summer (28-30 °C) and winter (10 °C)
average temperature. It has an average rainfall of 1455 mm/yr, 65% of
which falls during the period of June to August.

2.2. Data

For Bangkok and its vicinity, Thailand, observed rainfall data
(1976–2005) for 17 rainfall station and temperature data
3

(1976–2005) for 4 temperature stationwas collected from the ThaiMe-
teorological Department (TMD), Thailand. Likewise, for Kathmandu val-
ley, Nepal, observed rainfall data (1976-2005) for 10 rainfall station and
temperature data (1976–2005) for 3 temperature station was collected
from the Department of Hydrology andMeteorology (DHM), Nepal. Be-
cause of the inaccessibility of the observed rainfall and temperature data
in Ho Chi Minh city, Vietnam, gridded precipitation data (APHRO-
DITE) and gridded temperature data (CPC NOAA) were used. In this

Image of Fig. 1
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study, simulation of 21 RCMs (M1 to M21) from Coordinated Re-
gional Climate Downscaling Experiment (CORDEX) were extracted.
RCMs were selected based on their data availability over the study
region (Table 1). The selected RCMs were downloaded from the
CORDEX data portal (https://esgf-data.dkrz.de/search/cordex-dkrz/
) and were further evaluated. All three Asian cities in this study re-
fers to the region containing the city and surrounding areas. The sim-
ulation performed for this study were executed by three RCMs:
RegCM4-4, RCA4 and CCAM which offers different land surface
scheme such as Community Land Model (CLM 3.5) (Oleson et al.,
2008), Tile approach (Samuelsson et al., 2006) and Soil canopy
scheme (Kowalczyk et al., 1994) respectively. All these land surface
Table 1
Data used in the study with their corresponding sources.

Data type Frequency/time Unit/
Format

Reso

Data required for evaluation of RCMs
Observed Rainfall Daily/1976–2005 Mm
Observed maximum and minimum temperature Daily/1976–2005 °C

RCMs data Daily/1976–2005 Mm

APHRODITE data Daily/1976–2005 Mm

NOAA climate data sets Daily/1976–2005 °C

RCMs, their domain, driving model and driving model institute

Model
Serial

Domain Model Driving Model Driving Model Institute

M1
South
Asia

RegCM4-4 CCCma-CanESm2 Canadian Centre for Climate M

M2
South
Asia

RegCM4-4 CERFACS-CNRM-CM5
Center National de Recherches
Scientifique, France

M3
South
Asia

RegCM4-4 CSIRO-MK3-6-0
Queensland Climate Change Ce
Organization, Australia

M4
South
Asia

RegCM4-4 GFDL-ESM2M NOAA Geophysical Fluid Dynam

M5
South
Asia

RegCM4-4 IPSL-CM5A-LR Institut Pierre Simon Laplace, F

M6
South
Asia

RegCM4-4 MPI-ESM-MR Helmholtz-Zentrum Geesthach

M7
South
Asia

RCA4 CCCma-CanESM2 Canadian Centre for Climate M

M8
South
Asia

RCA4 CNRM-CM5
Center National de Recherches
Scientifique, France

M9
South
Asia

RCA4 CSIRO-MK3
Queensland Climate Change Ce
Organization, Australia

M10
South
Asia

RCA4 ICHE-EC-EARTH A European Community Earth-

M11
South
Asia

RCA4 IPSL-CM5A-LR Institut Pierre Simon Laplace, F

M12
South
Asia

RCA4 MIROC5
Atmosphere and Ocean Resear
and Japan Agency for Marine E

M13
South
Asia

RCA4 MPI-ESM-LR Helmholtz-Zentrum Geesthach

M14
South
Asia

RCA4 NCC-NorESM1-M Norwegian Climate Center

M15
South
Asia

RCA4 NOAA-GFDL-ESM2M NOAA Geophysical Fluid Dynam

M16
South
Asia

CSIRO-CCAM ACCESS 1.0 Collaboration for Australia We

M17
South
Asia

CSIRO-CCAM CCSM4 US National Center for Atmosp

M18
South
Asia

CSIRO-CCAM CNRM-CM5
Center National de Recherches
Scientifique, France

M19
South
Asia

CSIRO-CCAM GFDL-CM3 NOAA Geophysical Fluid Dynam

M20
South
Asia

CSIRO-CCAM MPI-ESM-LR Helmholtz-Zentrum Geesthach

M21
South
Asia

CSIRO-CCAM NORESM-1 M Norwegian Climate Center

Note: TMD: Thai Meteorological Department, DWRPIS: Department of Water Resource Plannin
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scheme includes parameterizations of the urban canopy. The detail
model configuration is shown in supplementary Table 11.

2.3. Methodology

The overall methodological framework adopted in this study is
depicted in Fig. 2. In this study, twenty one RCMs with gridded resolu-
tion of 0.44° × 0.44° from the CORDEX data portal were accessed for
six climate indices; Consecutive Dry Days (CDD), Simple Daily Intensity
Index (SDII), Number of extremely heavy precipitation days (R50mm),
Maximum 1-day precipitation amount (RX1day), Mean of daily maxi-
mum temperature (TXmean) andMean of dailyminimum temperature
lution Source

Bangkok HCMC Kathmandu

– TMD DWRPIS DHM
– TMD DWRPIS DHM

–
CORDEX data portal

(https://esgf-data.dkrz.de/search/cordex-dkrz/)
– Research Institute for Humanity and Nature (http://www.chikyu.ac.jp)

–
NOAA's National Centers for Environmental Information (NCEI)

(https://www.ncdc.noaa.gov/cdo-web/)

odelling and Analysis, Canada

Meteorologiques and Center Europeen de Recherche et Formation Avancees en Calcul

nter of Excellence and Commonwealth Scientific and Industrial Research

ics Laboratory, USA

rance

t, Climate Service Center, Max Plank Institute for Meteorology

odelling and Analysis, Canada

Meteorologiques and Center Europeen de Recherche et Formation Avancees en Calcul

nter of Excellence and Commonwealth Scientific and Industrial Research

System Model

rance

ch Institute (The University of Tokyo), National Institute for Environmental Studies
arth Science and Technology.

t, Climate Service Center, Max Plank Institute for Meteorology

ics Laboratory, USA

ather and Climate Research, Australian Government

heric Research

Meteorologiques and Center Europeen de Recherche et Formation Avancees en Calcul

ics Laboratory, USA

t, Climate Service Center, Max Plank Institute for Meteorology

g in South of Vietnam, DHM: Department of Hydrology and Meteorology.

https://esgf-data.dkrz.de/search/cordex-dkrz/
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Fig. 2.Overall methodological framework for evaluation of RCMs in selected Asian cities. (Note: RCMs: Regional ClimateModels, CORDEX: Coordinated Regional Climate Downscaling Ex-
periment, CDD: Consecutive Dry Days, SDII: Simple Daily Intensity Index, R50mm: Number of extremely heavy precipitation days, RX1day: Maximum 1-day precipitation amount, TX
mean: Mean of maximum temperature, TN mean: Mean of minimum temperature).
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(TN mean) using four performance indicators. The performance indica-
tors usedwere correlation coefficient, normalized rootmean square de-
viation, absolute normalized root mean square deviation and average
absolute relative deviation. The Entropy method was endorsed to ac-
quire weights of these 4 indicators and weightage average techniques
was used for ranking of 21 RCM's in all three Asian cities.

2.4. Climate indices

Six climate indices; Consecutive Dry Days (CDD), SimpleDaily Inten-
sity Index (SDII), Number of extremely heavy precipitation days
(R50mm), Maximum 1-day precipitation amount (RX1day), Mean of
daily maximum temperature (TX mean) and Mean of daily minimum
temperature (TN mean) were used to compare the observed climate
datasets (1976–2005) with the historical RCMs datasets (1976–2005)
(Table 2). To keep the work manageable, we only analyzed for six indi-
ces in total, four indices to represent change in precipitation and two in-
dices to represent change in temperature. The climate indices are
selected from the set of indices described by the Joint CCI/CLIVAR/
JCOMMExpert TeamonClimate ChangeDetection and Indices (ETCCDI)
(Zhang et al., 2011) and Southeast Asia Regional Climate Downscaling
Project (SEACLID) (ARCP2015-04CMY-Tangang).
Table 2
Description of ETCCDI (Expert Team on Climate Change and Detection precipitation indices) in

ID Indicator Name Indicator De

CDD Consecutive dry days Maximum n
R50mm Number of extremely heavy precipitation days Annual coun
RX1day Maximum 1-day precipitation amount Monthly ma
SDII Simple daily intensity index The ratio of
TX mean Mean of Tmax Monthly me
TN mean Mean of Tmin Monthly me

5

2.5. Performance indicators

A performance indicator or metric is a quantifiable measure for any
RCM to determine howwell it simulates the observed data. Four perfor-
mance indicators; correlation coefficient, normalized root mean square
deviation, absolute normalized rootmean square deviation and average
absolute relative deviation were selected to evaluate the RCMs (Raju
and Kumar, 2014).

2.5.1. The correlation coefficient (CC)
The correlation coefficient provides information on the strength of

relationship between the observed and the simulated value. The value
of correlation coefficient ranges from -1 to +1 such that -1 < CC <
+1. A CC value close to 1 indicates perfect positive fit or good model
performance whereas, a CC closer to 0 means there is no linear correla-
tion or weak correlation. The correlation coefficient (CC) is computed
as:

CC ¼ ∑T
i¼1 xi−xð Þ yi−yð Þ
T−1ð Þσobsσ sim

ð1Þ
dices used in this study.

finition Units

umber of consecutive days when precipitation <1 mm in a year. days
t when precipitation ≥50 mm days
ximum 1-day precipitation mm
annual total precipitation to the number of wet days (≥ 1 mm) mm/days
an of daily maximum temperature °C
an of daily minimum temperature °C

Image of Fig. 2
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2.5.2. Normalized root mean square deviation (NRMSD)
NRMSD is a measure of the difference between the observed values

and the model projected values and can be expressed as:

NRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T ∑

T
i¼1 xi−yið Þ2

q

x ̄
ð2Þ

Smaller values of NRMSD indicate better performance or predictive
power of the model. Ideally, a value of 0 is preferred.

2.5.3. Absolute normalized root mean square deviation (ANRMSD)
ANRMSD is defined as the ratio of the mean of difference between

simulated and observed value to the mean of observed value and is
expressed as:

ANRMSD ¼
1
T ∑

T
i¼1 yi−xið Þ

x

�����

����� ð3Þ

Here again, smaller values indicate better performance of themodel,
and ideally, a value of 0 is preferred (Chai and Draxler, 2014).

2.5.4. Average absolute relative deviation (AARD)
AARD is defined as the average of the absolute values of relative er-

rors and is expressed as:

AARD ¼ 1
T
∑T

i¼1
yi−xi
xi

����
���� ð4Þ

Smaller values again indicate better performance of themodel, and a
value of 0 is preferred (Willmott and Matsuura, 2005).

For Eqs. (1)–(4), xi and yi are the observed and simulated value, x ̄
and ȳ are averages of observed and simulated values, whereas σobs

and σsim and are the standard deviations of observed and simulated
value and T is the number of time steps or number of observations
(Sharifi et al., 2016).

2.6. Entropy method

The Entropy method was applied to determine the weights of indi-
cators (Pomerol and Romero, 2000; Raju and Nagesh, 2010). The
weights of the indicators for each grid rely on the formulated grid
wise payoff matrix, i.e., RCMs versus performance indicator array. The
main benefit of the Entropy method is that the weights are determined
for each indicatorwithout the involvement of a decisionmaker,which is
expected to reduce the undue bias towards any indicator. An added ad-
vantage of this method is that the variation of weights of indicators
across the various grid points provides a convenience for the water re-
sources planner to recognize their importance to the outcome. The ap-
plication steps of Entropy method are presented in the following (Li
et al., 2011). Firstly, it is assumed that there is a set of ‘m’ feasible alter-
natives, Ai (i=1, 2…., m) and ‘n’ evaluation criteria Cj (j= 1, 2…, n) in
the problem.

Step 1: Formation of decisionmatrix which shows the performances
of different alternatives (RCMs) with respect to various evaluation
criteria (performance indicators).

X ¼ Xij
� �

matrix ¼
X11 ⋯ X1n

⋮ ⋱ ⋮
Xm1 ⋯ Xmn

2
64

3
75where, i ¼ 1, 2 . . . :,m;j ¼ 1, 2 . . . , n ð5Þ

Xij presents the performance value of ith alternative on jth criteria.

Step 2: Normalization of the decision matrix (rij). Beneficial (maxi-
mization) and non-beneficial (minimization) criteria are normalized
6

byEqs. (6) and (7), respectively.Maximizationmeans, if the increase
in indictor value increase the better performance of model andmin-
imization refers that the decrease in indicator value increases the
better performance of model. To have the performance measures
comparable and dimensionless, all the entries of the decision matrix
are linear normalized using the following two equations:

rij ¼
Xij−min Xij

� �

max Xij
� �

−min Xij
� � where, i ¼ 1, 2 . . . :,m;j ¼ 1, 2 . . . , n ð6Þ

rij ¼
max Xij

� �
−Xij

max Xij
� �

−min Xij
� � where, i ¼ 1, 2 . . . :,m;j ¼ 1, 2 . . . , n ð7Þ

Step 3: Determination of Entropy value (ej) for each evaluation
criteria (performance indicators).

ej ¼
−1
ln mð Þ∑

m
i¼1 f ij ∗ ln f ij

� 	
where, i ¼ 1, 2 . . . :,m;j ¼ 1, 2 . . . , n ð8Þ

f ij ¼ rij
∑m

i¼1rij
where; i ¼ 1;2…:;m; j ¼ 1;2…;n and 0 < ej < 1 (9)

Step 4: Calculation of Entropy weights (Wj) based on degree of di-
versification (Dj).

Dj ¼ 1−ej ð10Þ

Wj ¼
Dj

∑n
j¼1Dj

where,∑n
j¼1Wj ¼ 1 ð11Þ

The smaller the value of the entropy, the larger the entropy-based
weight, then the specific criterion provides more information, and this
criterion becomesmore important than the other criteria in the decision
making process (Wu et al., 2011).

2.7. Weighted average technique

Weighted average technique was applied to rank the alternatives
(RCMs) in Bangkok and its vicinity and this technique depends on the
weight of indicator for CC, NRMSD, ANRMSD and AARD (Raju and
Kumar, 2014). It is the utility related technique as is applied as:

Vj ¼ ∑n
j¼1rijW j where; j ¼ 1;2…;n;∑n

j¼1W j ¼ 1;Wj > ¼ 0 ð12Þ

3. Results and discussions

3.1. Calculation of performance indicators

Table 3 demonstrate the value obtained for the four performance in-
dicators (CC, NRMSD, ANRMSD and AARD) (Eqs. (1)–(4)) for the se-
lected 21 RCMs in 3 Asian cities (Bangkok and its vicinity, Ho Chi
Minh city and Kathmandu valley) for Consecutive DryDays (CDD).Min-
imum or zero error is desirable in case of NRMSD, ANRMSD and AARD
whereas an ideal value of 1 is desirable for CC.

For Bangkok and its vicinity, in the case of CC as obtained from
Eq. (1), M11 was correlated well with the observed data with a value
of 0.206, whereas a minimum CC was observed for M19 with a value
of -0.203. In the case of the NRMSD indicator (Eq. (2)), M11 is the pre-
ferred RCM, with a NRMSD value of 0.526, whereas M3 is the least pre-
ferred (NRMSD = 0.968). For ANRMSD (Eq. (3)) as well, M11 is the
preferred RCM (0.139) whereas M3 is the least preferred (0.795). For
AARD (Eq. (4)), M8 and M3 are the most and least preferred RCMs,
respectively.



Table 3
Rectangular matrix of four performance indicators (Correlation coefficient (CC), Normalized root mean square deviation (NRMSD), Absolute normalized root mean square deviation
(ANRMSD) and Average absolute relative deviation (AARD)) obtained for 21 chosen RCMs for consecutive dry days (CDD) in three Asian cities; Bangkok and its vicinity, Ho Chi Minh
city and Kathmandu valley. (Green color indicates good performance and blue color indicates bad performance).

Modal 

Serial

Bangkok and its vicinity Ho Chi Minh City Kathmandu Valley

CC NRMSD ANRMSD AARD CC NRMSD ANRMSD AARD CC NRMSD ANRMSD AARD

M1 0.029 0.593 0.166 0.547 0.077 0.580 0.294 0.453 0.047 0.876 0.686 0.639

M2 0.014 0.626 0.257 0.642 -0.298 0.627 0.149 0.575 0.102 0.818 0.611 0.577

M3 0.174 0.968 0.795 1.193 0.054 1.186 0.967 1.359 0.065 0.690 0.415 0.445

M4 0.059 0.764 0.378 0.810 0.171 0.854 0.361 0.866 -0.025 0.864 0.669 0.614

M5 0.001 0.618 0.198 0.601 0.065 0.627 0.240 0.627 0.000 0.832 0.628 0.593

M6 0.008 0.718 0.371 0.792 -0.029 0.848 0.496 0.936 0.188 0.835 0.645 0.604

M7 0.090 0.632 0.407 0.447 0.091 0.659 0.479 0.502 0.091 1.061 0.648 1.059

M8 0.151 0.582 0.317 0.423 -0.299 0.705 0.474 0.544 -0.013 1.036 0.347 0.442

M9 0.029 0.553 0.147 0.571 0.269 0.609 0.245 0.619 -0.127 1.618 1.261 1.832

M10 0.187 0.631 0.429 0.452 -0.204 0.770 0.611 0.645 0.181 0.898 0.521 0.881

M11 0.206 0.526 0.139 0.429 0.200 0.551 0.253 0.462 0.331 0.898 0.541 0.852

M12 0.138 0.584 0.217 0.471 0.008 0.687 0.264 0.616 0.227 0.881 0.488 0.814

M13 -0.054 0.634 0.352 0.460 0.015 0.628 0.428 0.469 0.048 0.970 0.396 0.856

M14 0.138 0.537 0.156 0.425 0.058 0.604 0.261 0.497 0.048 0.970 0.396 0.856

M15 0.158 0.589 0.249 0.450 0.262 0.660 0.197 0.623 0.051 0.837 0.285 0.732

M16 0.044 0.625 0.378 0.432 -0.152 0.773 0.612 0.682 0.112 0.760 0.502 0.541

M17 0.081 0.675 0.420 0.512 -0.034 0.795 0.625 0.739 -0.055 0.747 0.470 0.509

M18 0.018 0.650 0.372 0.499 -0.021 0.752 0.609 0.582 -0.117 0.785 0.541 0.529

M19 -0.203 0.719 0.427 0.584 -0.155 0.782 0.631 0.596 -0.006 0.781 0.552 0.514

M20 0.000 0.667 0.414 0.487 0.009 0.783 0.659 0.614 0.005 0.766 0.511 0.502

M21 0.039 0.624 0.356 0.459 -0.042 0.743 0.615 0.597 -0.153 0.784 0.537 0.509

Max 0.206 0.968 0.795 1.193 0.269 1.186 0.967 1.359 0.331 1.618 1.261 1.832

Min -0.203 0.526 0.139 0.423 -0.299 0.551 0.149 0.453 -0.153 0.690 0.285 0.442

Max-

Min
0.408 0.441 0.656 0.771 0.568 0.635 0.818 0.906 0.484 0.928 0.977 1.390

Table 4
Rectangular matrix of normalized performance indicators (Correlation coefficient (CC), Normalized root mean square deviation (NRMSD), Absolute normalized root mean square de-
viation (ANRMSD) and Average absolute relative deviation (AARD)) for 21 chosen RCMs, total entropy (ej) of each indicator, the degree of diversification (Dj) of each indicator, weight
of each indicator (Wj), weighted average value (Vj) of each RCMs, and the rank of each RCMs for consecutive dry days (CDD) in Bangkok and its vicinity, Ho Chi Minh city and
Kathmandu valley. (Green color indicates top 5 performing RCMs and blue color indicates bad performing RCM).

dal 

Serial

Bangkok and its vicinity Ho Chi Minh City Kathmandu Valley

CC NRMSD ANRMSD AARD
(Vj) 

(eq.12)
Rank CC NRMSD ANRMSD AARD

(Vj) 

(eq.12)
Rank CC NRMSD ANRMSD AARD

(Vj) 

(eq.12)
Rank

M1 0.566 0.848 0.958 0.838 0.790 8 0.663 0.954 0.822 1.000 0.802 4 0.413 0.800 0.589 0.858 0.573 12

M2 0.529 0.774 0.820 0.716 0.700 13 0.002 0.880 1.000 0.865 0.526 14 0.525 0.862 0.666 0.903 0.661 7

M3 0.923 0.000 0.000 0.000 0.272 21 0.621 0.000 0.000 0.000 0.270 21 0.450 1.000 0.866 0.998 0.691 6

M4 0.641 0.461 0.635 0.498 0.566 18 0.827 0.523 0.741 0.544 0.712 8 0.264 0.812 0.607 0.876 0.503 18

M5 0.498 0.794 0.909 0.769 0.730 12 0.642 0.880 0.889 0.808 0.767 6 0.315 0.848 0.648 0.892 0.544 16

M6 0.515 0.566 0.645 0.520 0.560 19 0.475 0.532 0.576 0.467 0.508 16 0.703 0.844 0.631 0.884 0.743 3

M7 0.716 0.761 0.591 0.968 0.752 9 0.687 0.830 0.596 0.946 0.728 7 0.503 0.601 0.628 0.556 0.547 15

M8 0.865 0.874 0.728 1.000 0.863 5 0.000 0.758 0.603 0.900 0.412 19 0.288 0.628 0.936 1.000 0.561 14

M9 0.568 0.940 0.988 0.808 0.813 7 1.000 0.908 0.882 0.816 0.927 1 0.053 0.000 0.000 0.000 0.028 21

M10 0.953 0.764 0.557 0.962 0.813 6 0.168 0.656 0.435 0.788 0.410 20 0.690 0.776 0.758 0.684 0.713 4

M11 1.000 1.000 1.000 0.992 0.998 1 0.879 1.000 0.873 0.990 0.914 3 1.000 0.776 0.738 0.705 0.875 1

M12 0.834 0.869 0.881 0.937 0.877 4 0.540 0.786 0.859 0.820 0.702 9 0.785 0.794 0.792 0.732 0.779 2

M13 0.364 0.755 0.675 0.951 0.665 16 0.552 0.878 0.659 0.982 0.699 10 0.414 0.699 0.886 0.702 0.581 10

M14 0.835 0.977 0.974 0.997 0.939 2 0.628 0.917 0.863 0.952 0.783 5 0.414 0.699 0.886 0.702 0.581 11

M15 0.883 0.858 0.831 0.965 0.883 3 0.988 0.828 0.942 0.813 0.923 2 0.421 0.842 1.000 0.791 0.639 8

M16 0.604 0.776 0.635 0.988 0.738 10 0.259 0.650 0.434 0.748 0.442 18 0.546 0.925 0.777 0.929 0.704 5

M17 0.694 0.664 0.571 0.884 0.699 14 0.466 0.615 0.418 0.684 0.513 15 0.201 0.939 0.810 0.952 0.535 17

M18 0.539 0.721 0.644 0.901 0.689 15 0.489 0.683 0.437 0.857 0.565 11 0.073 0.898 0.737 0.938 0.448 19

M19 0.000 0.564 0.561 0.791 0.449 20 0.253 0.637 0.411 0.842 0.446 17 0.303 0.902 0.727 0.949 0.569 13

M20 0.497 0.680 0.581 0.917 0.655 17 0.542 0.634 0.377 0.822 0.560 12 0.326 0.919 0.768 0.957 0.591 9

M21 0.593 0.779 0.669 0.953 0.736 11 0.453 0.697 0.430 0.841 0.548 13 0.000 0.899 0.742 0.952 0.413 20

ej 
(eq.8) 0.973 0.979 0.977 0.979 - - 0.942 0.978 0.967 0.979 - - 0.937 0.981 0.981 0.980 - -

Dj
(eq.10) 0.027 0.021 0.023 0.021 - - 0.058 0.022 0.033 0.021 - - 0.063 0.019 0.019 0.020 - -

Wj
(eq.11) 0.295 0.229 0.249 0.227 - - 0.435 0.163 0.247 0.156 - - 0.522 0.154 0.161 0.162 - -
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For Ho Chi Minh City, in case of CC (Eq. (1)), M9 is associated well
with the observed data with value of 0.268, whereas a least CC of
-0.299 was observed for M8. For NRMSD (Eq. (2)), M11 is the desired
RCM, with a NRMSD value of 0.551 and M3 is the least desired RCM
with value of 1.186. In case of ANRMSD (Eq. (3)) M2 is the preferred
RCM (0.149) and M3 is the least preferred RCM (0.967). For AARD
(Eq. (4)), M1 and M3 are the most and least preferred RCMs,
respectively.

For Kathmandu valley, in case of CC (Eq. (1)), M11 is correlated well
with the observed data with value of 0.331, whereas a lowest CC of
-0.153 was noted for M21. For NRMSD (Eq. (2)), M3 is the desired
RCM, with a NRMSD value of 0.690 and M9 is the least desired RCM
with value of 1.618. In case of ANRMSD (Eq. (3)) M15 is the preferred
RCM (0.285) and M9 is the least preferred RCM (1.261). For AARD
(Eq. (4)), M8 and M9 are the most and least preferred RCMs with
value of 0.442 and 1.832, respectively.
Table 5
Rank of 21 RCMs for all six climate indices in all three Asian
Kathmandu Valley with their rank sum. (Note: CDD: Con
R50mm: Number of extremely heavy precipitation days
mean: Mean of maximum temperature, TN mean: Mean
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3.2. Application of entropy method and weighted average techniques

Table 4 depicts the normalized performance indicators (Eqs. (6) and
(7)), total entropy (ej) of each indicator (Eq. (8)), the degree of diversi-
fication (Dj) of each indicator (Eq. (10)), weight of each indicator (Wj)
(Eq. (11)), weighted average value (Vj) of each RCMs (Eq. (12)) and the
rank of each RCMs for consecutive dry days (CDD) in three Asian cities.

For Bangkok and its vicinity, CC has the highest importance value or
weightage (29.5%)whichmeans that its effect on ranking of RCMs is sig-
nificant. The total contribution of NRMSD, ANRMSD and AARD are
22.9%, 24.9% and 22.7% respectively. Ideal RCMs are the onewith the su-
preme weighted average value (Vj). For consecutive dry days, RCMs;
M11, M14, M15, M12, and M8 with the convenience value of 0.998,
0.939, 0.883, 0.877, and 0.863 occupies 1st, 2nd, 3rd, 4th, and 5th posi-
tions respectively, whereas M3 with the weighted average value of
0.272 occupies 21st position.
cities; Bangkok and its vicinity, Ho ChiMinh city and
secutive Dry Days, SDII: Simple Daily Intensity Index,
, RX1day: Maximum 1-day precipitation amount, TX
of minimum temperature).

 Ho Chi Minh City Rank in Kathmandu Valley
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Table 6
Rectangular matrix of four performance indicators (Correlation coefficient (CC), Normal-
ized root mean square deviation (NRMSD), Absolute normalized root mean square devia-
tion (ANRMSD) and Average absolute relative deviation (AARD)) obtained for three
model ensembles for consecutive dry days (CDD) in three Asian cities; Bangkok and its vi-
cinity, Ho Chi Minh city and Kathmandu valley.

Consecutive Dry Days (CDD)

Bangkok and its vicinity

Model ensemble CC NRMSD ANRMSD AARD

RegCM4-4 0.108 0.584 0.308 0.669
RCA4 0.269 0.496 0.230 0.352

CSIRO-CCAM -0.013 0.617 0.395 0.434

Ho Chi Minh city
RegCM4-4 0.060 0.544 0.287 0.629

RCA4 0.214 0.475 0.230 0.389
CSIRO-CCAM -0.164 0.748 0.625 0.602

Kathmandu valley
RegCM4-4 0.181 0.806 0.609 0.552

RCA4 0.235 0.799 0.551 0.877
CSIRO-CCAM -0.053 0.748 0.519 0.487
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For Ho Chi Minh City, CC has the highest importance value or
weightage (43.5%)whichmeans that its effect on ranking of RCMs is sig-
nificant. The total contribution of NRMSD, ANRMSD and AARD are
16.3%, 24.7% and 15.6% respectively. RCMs: M9, M15, M11, M1, and
M14 with the weightage average value of 0.927, 0.923, 0.914, 0.802,
and 0.783 occupies 1st, 2nd, 3rd, 4th, and 5th positions respectively,
whereas M3 with the weightage average value of 0.270 occupies 21st
position.

For Kathmandu valley, CC has the highest importance value or
weightage (52.2%)whichmeans that its effect on ranking of RCMs is sig-
nificant. The total contribution of NRMSD, ANRMSD and AARD are
15.4%, 16.1% and 16.2% respectively. RCMs: M11, M12, M6, M10, and
M16 with the weighted average value of 0.875, 0.779, 0.743, 0.713,
and 0.704 occupies 1st, 2nd, 3rd, 4th, and 5th positions respectively,
whereas M3 with the weighted average value of 0.028 occupies 21st
position.

Similar kind of analysis was conducted for all other 5 climate indices
(SDII, R50mm, Rx1day, TX mean, and TN mean) (Supplementary Ta-
bles 1-10). Theweighted average value of all 21 RCMs for six climate in-
dices and three Asian cities; Bangkok and its vicinity, Ho Chi Minh city
and Kathmandu Valley are shown in supplementary Figs. 4-6,
respectively.

3.3. Final selection of RCMs

The above analysis indicates that each performance indicator re-
sponds differently for various RCMs and climate indices. We also
found out that the best model for one climate index is not the same
best model for other climate indices. In the present study, an effort
wasmade to explore all 4 performance indicators simultaneously to as-
sess their applicability (and their relative contribution) while ranking
the RCMs for each climate index in three Asian cities. For the final selec-
tion of the RCMs in each Asian cities, the rank of each RCMs for all cli-
mate indices are summed up to obtain the rank score and the RCMs
with least rank score is the better performing RCMs (Table 5). We
found out that, RCMs; WAS44_SMHI_RCA4_IPSL_CM5A_MR (M11),
WAS44_SMHI_RCA4_NCC_NorESM1_M (M14), WAS44_SMHI_RCA4_CC
Cma_CanESM2 (M7), WAS44_SMHI_RCA4_ICHE_EC_EARTH (M10) and,
WAS44_SMHI_RCA4_MPI_ESM_LR (M13) are the top five best performing
RCMs in Bangkok and its vicinity, Thailand, respectively. Likewise, RCMs;
WAS44_SMHI_RCA4_MIROC5 (M12), WAS44_SMHI_RCA4_CCCma_Can
ESM2 (M7), WAS44_IITM_REGCM4-4_MPI_ESM_MR (M6), WAS44_
SMHI_RCA4_IPSL_CM5A_MR (M11), and WAS44_SMHI_RCA4_MPI_ESM_LR
(M13) are top five best performing RCMs for Ho Chi Minh city, Vietnam, re-
spectively. Similarly, RCMs; WAS44_IITM_REGCM4-4_CSIRO_MK3-6-0
(M3), WAS44_SMHI_RCA4_MIROC5 (M12), WAS44_SMHI_RCA4_
IPSL_CM5A_MR (M11), WAS44_SMHI_RCA4_CCCma_CanESM2 (M7), and
WAS44_IITM_REGCM4-4_MPI_ESM_MR (M6) are top five RCMs for
Kathmandu valley, Nepal, respectively.

The result reveals that RCMs;WAS44_SMHI_RCA4_CCCma_CanESM2
(M7) and WAS44_SMHI_RCA4_IPSL_CM5A_MR (11) are common in top
five position in all 3 Asian cities.

The comparison between observed vs historical RCMs for mean
monthly rainfall (1976–2005), mean monthly maximum, and mean
minimum temperature (1976–2005) of all RCMs in three Asian cities
is shown in supplementary Figs. 1-3.

3.4. Climate model ensemble to reproduce observed indices

To check the ability of climatemodel ensembles to reproduce the ob-
served climate indices, the ensembles of three RCMs: RegCM4-4, RCA4
and CSIRO-CCAM driven by different GCMs (Table 1) were first calcu-
lated and were evaluated for six climate indices; Consecutive Dry Days
(CDD), Simple Daily Intensity Index (SDII), Number of extremely
heavy precipitation days (R50mm), Maximum 1-day precipitation
amount (RX1day), Mean of daily maximum temperature (TX mean)
9

andMean of daily minimum temperature (TNmean) using four perfor-
mance indicators. The performance indicators usedwere correlation co-
efficient, normalized root mean square deviation, absolute normalized
root mean square deviation and average absolute relative deviation.

Table 6 shows the value obtained for the four performance indica-
tors (CC, NRMSD, ANRMSD and AARD) for three model ensembles in 3
Asian cities (Bangkok and its vicinity, Ho Chi Minh city and
Kathmandu valley) for Consecutive Dry Days (CDD). Minimum or zero
error is desirable in case of NRMSD, ANRMSD and AARD whereas an
ideal value of 1 is desirable for CC.

The result shows that, model ensembles of RCA4 perform better for
climate indices Consecutive Dry Days (CDD) in both Asian cities:
Bangkok and its vicinity and Ho Chi Minh city with the value of 0.269,
0.496, 0.230 and 0.352 for CC, NRMSD, ANRMSD and AARD respectively
in Bangkok and its vicinity and 0.214, 0.475, 0.230 and 0.389 for CC,
NRMSD, ANRMSD and AARD respectively in Ho ChiMinh city. Similarly,
for Kathmandu valley RCA4 model ensembles is correlated well with
observed data with a value of 0.235, whereas in case of NRMSD,
ANRMSD and AARD, CSIRO-CCAM model ensembles is the preferred
RCMs with value of 0.746, 0.519 and 0.487, respectively.

Similar analysis was performed for all other climate indices (SDII,
R50mm, Rx1day, TX mean, and TN mean) and summarized in Supple-
mentary Table 12.

4. Conclusions

For the rational catchment management and climate change impact
assessment studies, there is an urgent need for the reliable future cli-
mate change projection. Regional Climate Models (RCMs) are the
most modern tools for simulating the future climate conditions. How-
ever, inherent uncertainties, alongwith other factor such as time limita-
tions, human resource availability, or computational constraintsmake it
imperative to sort out the most appropriate set of RCMs for the assess-
ment of climate change impacts in the region.

In this study, four performance indicators (CC, NRMSD, ANRMSD
and AARD) were applied to rank 21 RCMs in three Asian cities
(Bangkok and its vicinity, Ho Chi Minh city and Kathmandu Valley) for
six different climate indices; Consecutive Dry Days (CDD), Simple
Daily Intensity Index (SDII), Number of extremely heavy precipitation
days (R50mm), Maximum 1-day precipitation amount (RX1day),
Mean of daily maximum temperature (TX mean) and Mean of daily
minimum temperature (TN mean). Entropy method was endorsed to
acquire weights of these 4 indicators andweightage average techniques
was used for ranking of 21 RCMs.
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The result highlighted that each indicator responds differently for var-
ious RCMs and climate indices and the bestmodel for one climate index is
not the same best model for other climate indices. Among the 21 RCMs,
the study reveals that, WAS44_SMHI_RCA4_IPSL_CM5A_MR (M11),
WAS44_SMHI_RCA4_MIROC5 (M12), and WAS44_IITM_REGCM4-
4_CSIRO_MK3-6-0 (M3) are the best performing RCMs in Bangkok and
its vicinity, Ho Chi Minh city and Kathmandu valley, respectively. The re-
sult discloses that RCMs; WAS44_SMHI_RCA4_CCCma_CanESM2 (M7)
and WAS44_SMHI_RCA4_IPSL_CM5A_MR (11) are common in top five
position in all 3 Asian cities.

The results of this study provide insight into the performance of dif-
ferent RCMs in simulating the past climate over the three Asian cities,
which advances our knowledge of the applicability of RCMs in assessing
climate change in this region. In the future, more RCM simulations at
higher resolution should be conducted and ensembled to examine the
climate dynamics of the Asian cities.
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